The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.
Atmospheric rivers (ARs) that reach the Antarctic Ice Sheet (AIS) transport anomalous moisture from lower latitudes and can impact the AIS via extreme precipitation and increased downward longwave radiation. ARs contribute significantly to the interannual variability of precipitation over the AIS and thus are likely to play a key role in understanding future changes in the surface mass balance of the AIS. Dronning Maud Land (DML) is one of four maxima in AR frequency over coastal East Antarctica, with AR precipitation explaining 77% of the interannual variability in precipitation for this region. We employ a 16‐node self‐organizing map (SOM) trained with MERRA‐2 sea‐level pressure anomalies to identify synoptic‐scale environments associated with landfalling ARs in and around DML. Node composites of atmospheric variables reveal common drivers of precipitation associated with ARs reaching DML including anomalous high‐low surface pressure couplets, anomalously high integrated water vapor, and coastal barrier jets. Using a quasi‐geostrophic framework, we find that upward vertical motion associated with the occlusion process of attendant cyclones dominates atmospheric lift in AR environments. We further identify mechanisms that explain the variability in AR precipitation intensity across nodes, such as the lift associated with the occlusion process of attendant cyclones and the spatial coincidence of ascent induced by the occlusion process and frontogenesis. The latter suggests that ARs making landfall during the mature phase of cyclogenesis result in higher precipitation intensity compared to landfalling ARs that occur during the occluded phase.
more » « less- PAR ID:
- 10411962
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 128
- Issue:
- 7
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Atmospheric rivers (ARs) are efficient mechanisms for transporting atmospheric moisture from low latitudes to the Antarctic Ice Sheet (AIS). While AR events occur infrequently, they can lead to extreme precipitation and surface melt events on the AIS. Here we estimate the contribution of ARs to total Antarctic precipitation, by combining precipitation from atmospheric reanalyses and a polar‐specific AR detection algorithm. We show that ARs contribute substantially to Antarctic precipitation, especially in East Antarctica at elevations below 3,000 m. ARs contribute substantially to year‐to‐year variability in Antarctic precipitation. Our results highlight that ARs are an important component for understanding present and future Antarctic mass balance trends and variability.
-
The Role of Nearshore Air‐Sea Interactions for Landfalling Atmospheric Rivers on the U.S. West Coast
Abstract Research on Atmospheric Rivers (ARs) has focused primarily on AR (thermo)dynamics and hydrological impacts over land. However, the evolution and potential role of nearshore air‐sea fluxes during landfalling ARs are not well documented. Here, we examine synoptic evolutions of nearshore latent heat flux (LHF) during strong late‐winter landfalling ARs (1979–2017) using 138 overshelf buoys along the U. S. west coast. Composite evolutions show that ARs typically receive upward (absolute) LHF from the coastal ocean. LHF is small during landfall due to weak air‐sea humidity gradients but is strongest (30–50 W/m2along the coast) 1–3 days before/after landfall. During El Niño winters, southern‐coastal LHF strengthens, coincident with stronger ARs. A decomposition of LHF reveals that sea surface temperature (SST) anomalies modulated by the El Niño Southern Oscillation dominate interannual LHF variations under ARs, suggesting a potential role for nearshore SST and LHF influencing the intensity of landfalling ARs.
-
Abstract Atmospheric rivers (ARs) manifest as transient filaments of intense water vapor transport that contribute to synoptic‐scale extremes and interannual variability of precipitation. Despite these influences, the synoptic‐ to planetary‐scale processes that lead to ARs remain inadequately understood. In this study, North Pacific ARs within the November–April season are objectively identified in both reanalysis data and the Community Earth System Model Version 2, and atmospheric patterns preceding AR landfalls beyond 1 week in advance are examined. Latitudinal dependence of the AR processes is investigated by sampling events near the Oregon (45°N, 230°E) and southern California (35°N, 230°E) coasts. Oregon ARs exhibit a pronounced anticyclone emerging over Alaska 1–2 weeks before AR landfall that migrates westward into Siberia, dual midlatitude cyclones developing over southeast coastal Asia and the northeast Pacific, and a zonally elongated band of enhanced water vapor transport spanning the entire North Pacific basin that guides anomalous moisture toward the North American west coast. The precursor high‐latitude anticyclone corresponds to a significant increase in atmospheric blocking probability, suppressed synoptic eddy activity, and an equatorward‐shifted storm track. Southern California ARs also exhibit high‐latitude blocking but have an earlier‐developing and more intense northeast Pacific cyclone. Compared to reanalysis, Community Earth System Model Version 2 underestimates Northeast Pacific AR frequencies by 5–20% but generally captures AR precursor patterns well, particularly for Oregon ARs. Collectively, these results indicate that the identified precursor patterns represent physical processes that are central to ARs and are not simply an artifact of statistical analysis.
-
null (Ed.)Abstract Statistical relationships between atmospheric rivers (ARs) and extratropical cyclones and anticyclones are investigated on a global scale using objectively identified ARs, cyclones, and anticyclones during 1979–2014. Composites of circulation and moisture fields around the ARs show that a strong cyclone is located poleward and westward of the AR centroid, which confirms the close link between the AR and extratropical cyclone. In addition, a pronounced anticyclone is found to be located equatorward and eastward of the AR, whose presence together with the cyclone leads to strong horizontal pressure gradient that forces moisture to be transported along a narrow corridor within the warm sector of the cyclone. This anticyclone located toward the downstream equatorward side of the cyclone is found to be missing for cyclones not associated with ARs. These key features are robust in composites performed in different hemispheres, over different ocean basins, and with respect to different AR intensities. Furthermore, correlation analysis shows that the AR intensity is much better correlated with the pressure gradient between the cyclone and anticyclone than with the cyclone/anticyclone intensity alone, although stronger cyclones favor the occurrence of AR. The importance of the horizontal pressure gradient in the formation of the AR is also consistent with the fact that climatologically ARs are frequently found over the region between the polar lows and subtropical highs in all seasons.more » « less