skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TOD: GPU-Accelerated Outlier Detection via Tensor Operations
Outlier detection (OD) is a key machine learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection. In this work, we propose TOD, the first tensor-based system for efficient and scalable outlier detection on distributed multi-GPU machines. A key idea behind TOD is decomposing complex OD applications into a small collection of basic tensor algebra operators. This decomposition enables TOD to accelerate OD computations by leveraging recent advances in deep learning infrastructure in both hardware and software. Moreover, to deploy memory-intensive OD applications on modern GPUs with limited on-device memory, we introduce two key techniques. First, provable quantization speeds up OD computations and reduces its memory footprint by automatically performing specific floating-point operations in lower precision while provably guaranteeing no accuracy loss. Second, to exploit the aggregated compute resources and memory capacity of multiple GPUs, we introduce automatic batching , which decomposes OD computations into small batches for both sequential execution on a single GPU and parallel execution across multiple GPUs. TOD supports a diverse set of OD algorithms. Evaluation on 11 real-world and 3 synthetic OD datasets shows that TOD is on average 10.9X faster than the leading CPU-based OD system PyOD (with a maximum speedup of 38.9X), and can handle much larger datasets than existing GPU-based OD systems. In addition, TOD allows easy integration of new OD operators, enabling fast prototyping of emerging and yet-to-discovered OD algorithms.  more » « less
Award ID(s):
2147909
PAR ID:
10411988
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
3
ISSN:
2150-8097
Page Range / eLocation ID:
546 to 560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphics Processing Units (GPUs) exploit large amounts of thread-level parallelism to provide high instruction throughput and to efficiently hide long-latency stalls. The resulting high throughput, along with continued programmability improvements, have made GPUs an essential computational resource in many domains. Applications from different domains can have vastly different compute and memory demands on the GPU. In a large-scale computing environment, to efficiently accommodate such wide-ranging demands without leaving GPU resources underutilized, multiple applications can share a single GPU, akin to how multiple applications execute concurrently on a CPU. Multi-application concurrency requires several support mechanisms in both hardware and software. One such key mechanism is virtual memory, which manages and protects the address space of each application. However, modern GPUs lack the extensive support for multi-application concurrency available in CPUs, and as a result suffer from high performance overheads when shared by multiple applications, as we demonstrate. We perform a detailed analysis of which multi-application concurrency support limitations hurt GPU performance the most. We find that the poor performance is largely a result of the virtual memory mechanisms employed in modern GPUs. In particular, poor address translation performance is a key obstacle to efficient GPU sharing. State-of-the-art address translation mechanisms, which were designed for single-application execution, experience significant inter-application interference when multiple applications spatially share the GPU. This contention leads to frequent misses in the shared translation lookaside buffer (TLB), where a single miss can induce long-latency stalls for hundreds of threads. As a result, the GPU often cannot schedule enough threads to successfully hide the stalls, which diminishes system throughput and becomes a first-order performance concern. Based on our analysis, we propose MASK, a new GPU framework that provides low-overhead virtual memory support for the concurrent execution of multiple applications. MASK consists of three novel address-translation-aware cache and memory management mechanisms that work together to largely reduce the overhead of address translation: (1) a token-based technique to reduce TLB contention, (2) a bypassing mechanism to improve the effectiveness of cached address translations, and (3) an application-aware memory scheduling scheme to reduce the interference between address translation and data requests. Our evaluations show that MASK restores much of the throughput lost to TLB contention. Relative to a state-of-the-art GPU TLB, MASK improves system throughput by 57.8%, improves IPC throughput by 43.4%, and reduces application-level unfairness by 22.4%. MASK's system throughput is within 23.2% of an ideal GPU system with no address translation overhead. 
    more » « less
  2. Neural-network-enabled data analysis in real-time scientific applications imposes stringent requirements on inference latency. Meanwhile, recent deep learning (DL) model design trends to replace a single branch with multiple branches for high prediction accuracy and robustness, which makes interoperator parallelization become an effective approach to improve inference latency. However, existing inter-operator parallelization techniques for inference acceleration are mainly focused on utilization optimization in a single GPU. With the data size of an input sample and the scale of a DL model ever-growing, the limited resource of a single GPU is insufficient to support the parallel execution of large operators. In order to break this limitation, we study hybrid inter-operator parallelism both among multiple GPUs and in each GPU. In this paper, we design and implement a hierarchical inter-operator scheduler (HIOS) to automatically distribute large operators onto different GPUs and group small operators in the same GPU for parallel execution. Particularly, we propose a novel scheduling algorithm, named HIOS-LP, which consists of inter-GPU operator parallelization through iterative longest-path (LP) mapping and intra-GPU operator parallelization based on a sliding window. In addition to extensive simulation results, experiments with modern convolutional neural network benchmarks demonstrate that our HIOS-LP outperforms the state-of-the-art inter-operator scheduling algorithm IOS by up to 17% in real systems. 
    more » « less
  3. Multi-pattern matching is widely used in modern software for applications requiring high throughput such as protein search, network traffic inspection, virus or spam detection. Graphics Processor Units (GPUs) excel at executing massively parallel workloads. Regular expression (regex) matching is typically performed by simulating the execution of deterministic finite automata (DFAs) or nondeterministic finite automata (NFAs). The natural implementations of these automata simulation algorithms on GPUs are highly inefficient because they give rise to irregular memory access patterns. This paper presents HybridSA, a heterogeneous CPU-GPU parallel engine for multi-pattern matching. HybridSA uses bit parallelism to efficiently simulate NFAs on GPUs, thus reducing the number of memory accesses and increasing the throughput. Our bit-parallel algorithms extend the classical shift-and algorithm for string matching to a large class of regular expressions and reduce automata simulation to a small number of bitwise operations. We have developed a compiler to translate regular expressions into bit masks, perform optimizations, and choose the best algorithms to run on the GPU. The majority of the regular expressions are accelerated on the GPU, while the patterns that exhibit random memory accesses are executed on the CPU in parallel. We evaluate HybridSA against state-of-the-art CPU and GPU engines, as well as a hybrid combination of the two. HybridSA achieves between 4 and 60 times higher throughput than the state-of-the-art CPU engine and between 4 and 233 times better than the state-of-the-art GPU engine across a collection of real-world benchmarks. 
    more » « less
  4. Domain-specific languages that execute image processing pipelines on GPUs, such as Halide and Forma, operate by 1) dividing the image into overlapped tiles, and 2) fusing loops to improve memory locality. However, current approaches have limitations: 1) they require intra thread block synchronization, which has a nontrivial cost, 2) they must choose between small tiles that require more overlapped computations or large tiles that increase shared memory access (and lowers occupancy), and 3) their autoscheduling algorithms use simplified GPU models that can result in inefficient global memory accesses. We present a new approach for executing image processing pipelines on GPUs that addresses these limitations as follows. 1) We fuse loops to form overlapped tiles that fit in a single warp, which allows us to use lightweight warp synchronization. 2) We introduce hybrid tiling, which stores overlapped regions in a combination of thread-local registers and shared memory. Thus hybrid tiling either increases occupancy by decreasing shared memory usage or decreases overlapping computations using larger tiles. 3) We present an automatic loop fusion algorithm that considers several factors that affect the performance of GPU kernels. We implement these techniques in PolyMage-GPU, which is a new GPU backend for PolyMage. Our approach produces code that is faster than Halide's manual schedules: 1.65x faster on an NVIDIA GTX 1080Ti and 1.33x faster on an NVIDIA Tesla V100. 
    more » « less
  5. Concurrent kernel execution on GPU has proven an effective technique to improve system throughput by maximizing the resource utilization. In order to increase programmability and meet the increasing memory requirements of data-intensive applications, current GPUs support Unified Virtual Memory (UVM), which provides a virtual memory abstraction with demand paging. By allowing applications to oversubscribe GPU memory, UVM provides increased opportunities to share GPU resources across applications. However, in the presence of applications with competing memory requirements, GPU sharing can lead to performance degradation due to thrashing. NVIDIA's Multiple Process Service (MPS) offers the capability to space share bare metal GPUs, thereby enabling cluster workload managers, such as Slurm, to share a single GPU across MPI ranks with limited control over resource partitioning. However, it is not possible to preempt, schedule, or throttle a running GPU process through MPS. These features would enable new OS-managed scheduling policies to be implemented for GPU kernels to dynamically handle resource contention and offer consistent performance. The contribution of this paper is two-fold. We first show how memory oversubscription can impact the performance of concurrent GPU applications. Then, we propose three methods to transparently mitigate memory interference through kernel preemption and scheduling policies. To implement our policies, we develop our own runtime system (PILOT) to serve as an alternative to NVIDIA's MPS. In the presence of memory over-subscription, we noticed a dramatic improvement in the overall throughput when using our scheduling policies and runtime hints. 
    more » « less