skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Grid edge classification method to enhance levee resolution in dual-grid flood inundation models
Award ID(s):
2031535 1735040
PAR ID:
10412004
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Water Resources
Volume:
168
Issue:
C
ISSN:
0309-1708
Page Range / eLocation ID:
104287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper makes use of electric vehicles (EVs) that are simultaneously connected to the Photovoltaic Cells (PV) and the power grid. In micro-grids, batteries of the electric vehicles (EVs) used as a source of power to feed the power grid in the peak demands of electricity. EVs can help regulation of the power grid by storing excess solar energy and returning it to the grid during high demand hours. This paper proposes a new architecture of micro-grids by using a rooftop solar system, Battery Electric Vehicles (BEVs), grid connected inverters, a boost converter, a bidirectional half-bridge converter, output filter, including L, LC, or LCL, and transformers. The main parts of this micro-grid are illustrated and modeled, as well as a simulation of their operation. In addition, simulation results explore the charging and discharging scenarios of the BEVs. 
    more » « less
  2. Sharpee, T (Ed.)
    Abstract Grid cells play a principal role in enabling cognitive representations of ambient environments. The key property of these cells—the regular arrangement of their firing fields—is commonly viewed as a means for establishing spatial scales or encoding specific locations. However, using grid cells’ spiking outputs for deducing geometric orderliness proves to be a strenuous task due to fairly irregular activation patterns triggered by the animal’s sporadic visits to the grid fields. This article addresses statistical mechanisms enabling emergent regularity of grid cell firing activity from the perspective of percolation theory. Using percolation phenomena for modeling the effect of the rat’s moves through the lattices of firing fields sheds new light on the mechanisms of spatial information processing, spatial learning, path integration, and establishing spatial metrics. It is also shown that physiological parameters required for spiking percolation match the experimental range, including the characteristic 2/3 ratio between the grid fields’ size and the grid spacing, pointing at a biological viability of the approach. 
    more » « less
  3. null (Ed.)