skip to main content


Title: Messages about valued knowledge products and processes embedded within a suite of transformed high school chemistry curricular materials
The way high school chemistry curricula are structured has the potential to convey consequential messages about knowledge and knowing to students and teachers. If a curriculum is built around practicing skills and recalling facts to reach “correct” answers, it is unlikely class activities will be seen (by students or the teacher) as opportunities to figure out causes for phenomena. Our team of teachers and researchers is working to understand how enactment of transformed curricular materials can support high school chemistry students in making sense of perplexing, relatable phenomena. Given this goal, we were surprised to see that co-developers who enacted our materials overwhelmingly emphasized the importance of acquiring true facts/skills when writing weekly reflections. Recognition that teachers’ expressed aims did not align with our stated goal of “supporting molecular-level sensemaking” led us to examine whether the tacit epistemological commitments reflected by our materials were, in fact, consistent with a course focused on figuring out phenomena. We described several aspects of each lesson in our two-semester curriculum including: the role of phenomena in lesson activities, the extent to which lessons were 3-dimensional, the role of student ideas in class dialogue, and who established coherence between lessons. Triangulation of these lesson features enabled us to infer messages about valued knowledge products and processes materials had the potential to send. We observed that our materials commonly encouraged students to mimic the structure of science practices for the purpose of being evaluated by the teacher. That is, students were asked to “go through the motions” of explaining, modeling etc. but had little agency regarding the sorts of models and explanations they found productive in their class community. This study serves to illustrate the importance of surfacing the tacit epistemological commitments that guide curriculum development. Additionally, it extends existing scholarship on epistemological messaging by considering curricular materials as a potentially consequential sources of messages.  more » « less
Award ID(s):
2003680
NSF-PAR ID:
10412031
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemistry Education Research and Practice
Volume:
24
Issue:
1
ISSN:
1109-4028
Page Range / eLocation ID:
71 to 88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As part of the e4usa curriculum, a MATLAB model has been developed and implemented in order to cultivate engineering and computational thinking skills in high school students. The MATLAB model uses a live script that allows students to interact with sliders and dropdown menus to change parameters on a water filtration model. With computational skills increasingly in demand, the literature suggests that adding computational thinking and coding skills as a new form of literacy is crucial for preparing future engineering professionals. Additionally, to ensure that students are better prepared by the time they reach their post-secondary studies, early exposure to computational thinking skills has valuable implications. In this fundamental paper, we describe outcomes resulting from students' interactions with MATLAB in e4usa. The mathematical model allows the students to analyze the effects of different filtration materials, impurities to be removed, length of the water filter, and the space between particles in their filtration material. Using at first a mathematical model rather than testing physical materials will allow them to learn more about their potential filtration materials so that they may make more informed decisions about which filtration materials they want to select for their design and use in the prototype that they build and test. With that said, we focus on student outcomes in this design activity. We hypothesize that this modeling activity prior to design may reduce the time spent in physical testing as well as the volume of materials consumed. Additionally, we are inquisitive about the impact that it has on the subsequent design activities compared to previous semesters where this lesson was taught, where it was observed that students spend a considerable amount of time trying out different materials. As part of our data, we have collected teacher data from surveys, pre and post-responses about their expectations, attitudes, and perceived value of implementing the MATLAB model in their classrooms, class observation data from at least two schools where we noted the interactions between the teachers and students, and teacher and student focus groups at the end of the semester where we expect to collect richer data from these two groups that will allow us to triangulate data collected from surveys and classroom observations. 
    more » « less
  2. Creating pathways that stimulate high school learners’ interest in advanced topics with the goal of building a diverse, gender-balanced, future-ready workforce is crucial. To this end, we present the curriculum of a new, high school computer science course under development called Computer Science Frontiers (CSF). Building on the foundations set by the AP Computer Science Principles course, we seek to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning. The modular, open-access, hands-on curriculum provides an engaging introduction to these advanced topics in high school because currently they are accessible only to CS majors in college. It also focuses on other 21st century skills required to productively leverage computational methods and tools in virtually every profession. To address the dire gender disparity in computing, the curriculum was designed to engage female students by focusing on real world application domains, such as climate change and health, by including social applications and by emphasizing collaboration and teamwork. Our paper describes the design of curricular modules on Distributed Computing, IoT/Cybersecurity, and AI/Machine Learning. All project-based activities are designed to be collaborative, situated in contexts that are engaging to high school students, and often involve real-world world data. We piloted these modules in teacher PD workshops with 8 teachers from North Carolina, Tennessee, Massachusetts, Pennsylvania, and New York who then facilitated virtual summer camps with high school students in 2020 and 2021. Findings from teacher PD workshops as well as student camps indicate high levels of engagement in and enthusiasm for the curricular activities and topics. Post-intervention surveys suggest that these experiences generate student interest exploring these ideas further and connections to areas of interest to students. 
    more » « less
  3. In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access. 
    more » « less
  4. Karunakaran, S. S. ; Higgins, A. (Ed.)
    The critical role of teachers in supporting student engagement with reasoning and proving has long been recognized (Nardi & Knuth, 2017; NCTM, 2014). While some studies examined how prospective secondary teachers (PSTs) develop dispositions and teaching practices that promote student engagement with reasoning and proving (e.g., Buchbinder & McCrone, 2020; Conner, 2007), very little is known about long-term development of proof-related practices of beginning teachers and what factors affect this development (Stylianides et al., 2017). During the supervised teaching experiences, interns often encounter tensions between balancing their commitments to the university and cooperating teacher, while also developing their own teaching styles (Bieda et al., 2015; Smagorinsky et al., 2004; Wang et al., 2008). Our study examines how sociocultural contexts of the teacher preparation program and of the internship school, supported or inhibited proof-related teaching practices of beginning secondary mathematics teachers. In particular, this study aims to understand the observed gap between proof-related teaching practices of one such teacher, Olive, in two settings: as a PST in a capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 2020) and as an intern in a high-school classroom. We utilize activity theory (Leont’ev, 1979) and Engeström’s (1987) model of an activity system to examine how the various components of the system: teacher (subject), teaching (object), the tasks (tools), the curriculum and the expected teaching style (rules), the cooperating teacher (community) and their involvement during the teaching (division of labor) interact with each other and affect the opportunities provided to students to engage with reasoning and proving (outcome). The analysis of four lessons from each setting, lesson plans, reflections and interviews, showed that as a PST, Olive engaged students with reasoning and proving through productive proof-related teaching practices and rich tasks that involved conjecturing, justifying, proving and evaluating arguments. In a sharp contrast, as an intern, Olive had to follow her school’s rigid curriculum and expectations, and to adhere to her cooperating teacher’s teaching style. As a result, in her lessons as an intern students received limited opportunities for reasoning and proving. Olive expressed dissatisfaction with this type of teaching and her desire to enact more proof-oriented practices. Our results show that the sociocultural components of the activity system (rules, community and division of labor), which were backgrounded in Olive’s teaching experience as a PST but prominent in her internship experience, influenced the outcome of engaging students with reasoning and proving. We discuss the importance of these sociocultural aspects as we examine how Olive navigated the tensions between the proof-related teaching practices she adopted in the capstone course and her teaching style during the internship. We highlight the importance of teacher educators considering the sociocultural aspects of teaching in supporting beginning teachers developing proof-related teaching practices. 
    more » « less
  5. Sacristán, A. I. ; Cortés-Zavala, J. C. ; Ruiz-Arias, P. M. (Ed.)
    What impact, if any, do interesting lessons have on the types of questions students ask? To explore this question, we used lesson observations of six teachers from three high schools in the Northeast who were part of a larger study. Lessons come from a range of courses, spanning Algebra through Calculus. After each lesson, students reported interest via lesson experience surveys (Author, 2019). These interest measures were then used to identify each teachers’ highest and lowest interest lessons. The two lessons per teacher allows us to compare across the same set of students per teacher. We compiled 145 student questions and identified whether questions were asked within a group work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural questions were raised when students looked for algorithms or a solving process. Reasoning questions asked about why procedures worked, or facts were true. Exploratory questions expanded beyond the topic of focus, such as asking about changing the parameters to make sense of a problem. The remaining 90% of data were coded independently to determine interrater reliability (see Landis & Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Furthermore, both coders reconciled codes before continuing with data analysis. Initial results showed differences between high- and low-interest lessons. Although students raised fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons (86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ questions asked in high- and low-interest lessons. The high-interest lessons had more student questions arise during whole class discussions, whereas low-interest lessons had more student questions during group work. By partitioning each lesson into acts at points where the mathematical content shifted, we were able to examine through how many acts questions remained open. The average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference is significant t(5)=2.58, p = 0.049. Therefore, student interest in the lesson did appear to impact the type of questions students ask. One possible reason for the differences in student questions is the nature of the lessons students found interesting, which may allow for student freedom to wonder and chase their mathematical ideas. There may be more overall student questions in low-interest lessons because of confusion, but more research is needed to unpack the reasoning behind student questions. 
    more » « less