skip to main content


Title: Evaluation of eastern gamagrass as dual‐purpose complementary bioenergy and forage feedstock to switchgrass
Switchgrass (SG) is considered a model bioenergy crop and a warm- season peren-nial grass (WSPG) that traditionally served as forage feedstock in the United States. To avoid the sole dependence on SG for bioenergy production, evaluation of other crops to diversify the pool of feedstock is needed. We conducted a 3- year field ex-periment evaluating eastern gamagrass (GG), another WSPG, as complementary feedstock to SG in one- and two- cut systems, with or without intercropping with crimson clover or hairy vetch, and under different nitrogen (N) application rates. Our results showed that GG generally produced lower biomass (by 29.5%), theoreti-cal ethanol potential (TEP, by 2.8%), and theoretical ethanol yield (TEY, by 32.9%) than corresponding SG under the same conditions. However, forage quality meas-ures, namely acid detergent fiber (ADF), crude protein (CP), and elements P, K, Ca, and Mg were significantly higher in GG than those in SG. Nitrogen fertilizer signifi-cantly enhanced biomass (by 1.54 Mg ha−1), lignin content (by 2.10 g kg−1), and TEY (787.12 L ha−1) in the WSPGs compared to unfertilized treatments. Intercropping with crimson clover or hairy vetch did not significantly increase biomass of the WSPGs, or TEP and TEY in unfertilized plots. This study demonstrated that GG can serve as a complementary crop to SG and could be used as a dual- purpose crop for bioenergy and forage feedstock in farmers' rotations.  more » « less
Award ID(s):
2000058 1900885
PAR ID:
10412052
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
GCB Bioenergy
ISSN:
1757-1693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Extracellular glycosidases in soil, produced by microorganisms, act as major agents for decomposing labile soil organic carbon (e.g., cellulose). Soil extracellular glycosidases are significantly affected by nitrogen (N) fertilization but fertilization effects on spatial distributions of soil glycosidases have not been well addressed. Whether the effects of N fertilization vary with bioenergy crop species also remains unclear. Based on a 3-year fertilization experiment in Middle Tennessee, USA, a total of 288 soil samples in topsoil (0–15 cm) were collected from two 15 m 2 plots under three fertilization treatments in switchgrass (SG: Panicum virgatum L.) and gamagrass (GG: Tripsacum dactyloides L.) using a spatially explicit design. Four glycosidases, α-glucosidase ( AG ), β-glucosidase ( BG ), β-xylosidase ( BX ), cellobiohydrolase ( CBH ), and their sum associated with C acquisition ( C acq ) were quantified. The three fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha −1  year −1 in urea) and high N input (HN: 168 kg N ha −1  year −1 in urea). The descriptive and geostatistical approaches were used to evaluate their central tendency and spatial heterogeneity. Results showed significant interactive effects of N fertilization and crop type on BX such that LN and HN significantly enhanced BX by 14% and 44% in SG, respectively. The significant effect of crop type was identified and glycosidase activities were 15–39% higher in GG than those in SG except AG . Within-plot variances of glycosidases appeared higher in SG than GG but little differed with N fertilization due to large plot-plot variation. Spatial patterns were generally more evident in LN or HN plots than NN plots for BG in SG and CBH in GG. This study suggested that N fertilization elevated central tendency and spatial heterogeneity of glycosidase activities in surficial soil horizons and these effects however varied with crop and enzyme types. Future studies need to focus on specific enzyme in certain bioenergy cropland soil when N fertilization effect is evaluated. 
    more » « less
  2. Abstract Background

    Soil moisture, pH, dissolved organic carbon and nitrogen (DOC, DON) are important soil biogeochemical properties in switchgrass (SG) and gamagrass (GG) croplands. Yet their spatiotemporal patterns under nitrogen (N) fertilization have not been studied.

    Aims

    The objective of this study is to investigate the main and interactive effects of N fertilization and bioenergy crop type on central tendencies and spatial heterogeneity of soil moisture, pH, DOC and DON.

    Methods

    Based on a 3‐year long fertilization experiment in Middle Tennessee, USA, 288 samples of top horizon soils (0–15 cm) under three fertilization treatments in SG and GG croplands were collected. The fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha−1in urea) and high N input (HN: 168 kg N ha−1in urea). Soil moisture, pH, DOC and DON were quantified. And their within‐plot variations and spatial distributions were achieved via descriptive and geostatistical methods.

    Results

    Relative to NN, LN significantly increased DOC content in SG cropland. LN also elevated within‐plot spatial heterogeneity of soil moisture, pH, DOC and DON in both croplands though GG showed more evident spatial heterogeneity than SG. Despite the pronounced patterns described above, great plot to plot variations were also revealed in each treatment.

    Conclusion

    This study informs the generally low sensitivity of spatiotemporal responses in soil biogeochemical features to fertilizer amendments in bioenergy croplands. However, the significantly positive responses of DOC under low fertilizer input informed the best practice of optimizing agricultural nutrient amendment.

     
    more » « less
  3. Abstract

    Nitrogen (N) fertilization significantly affects soil extracellular oxidases, agents responsible for decomposition of slow turnover and recalcitrant soil organic carbon (SOC; e.g., lignin), and consequently influences soil carbon sequestration capacity. However, it remains unclear how soil oxidases mediate SOC sequestration under N fertilization, and whether these effects co‐vary with plant type (e.g., bioenergy crop species). Using a spatially explicit design and intensive soil sampling strategy under three fertilization treatments in switchgrass (SG:Panicum virgatumL.) and gamagrass (GG:Tripsacum dactyloidesL.) croplands, we quantified the activities of polyphenolic oxidase (PHO), peroxidase (PER), and their sum associated with recalcitrant C acquisition (OX). The fertilization treatments included no N fertilizer input (NN), low N input (LN: 84 kg N ha−1 year−1in urea), and high N input (HN: 168 kg N ha−1 year−1in urea). Besides correlations between soil oxidases and SOC (formerly published), both descriptive and geostatistical approaches were applied to evaluate the effects of N fertilization and crop type on soil oxidases activities and their spatial distributions. Results showed significantly negative correlations between soil oxidase activities and SOC across all treatments. The negative relationship of soil oxidases and SOC was also evident under N fertilization. First, LN significantly depressed oxidases in both mean activities and spatial heterogeneity, which corresponded to increased SOC in SG (though by 5.4%). LN slightly influenced oxidases activities and their spatial heterogeneity, consistent with insignificant changes of SOC in GG. Second, HN showed trends of decrease in soil oxidase activities, which aligned with the significantly enhanced SOC in both croplands. Overall, this study demonstrated that soil oxidase activities acted as sensitive and negative mediators of SOC sequestration in bioenergy croplands and optimizing fertilizer use particularly in switchgrass cropland can improve for both carbon sequestration and environmental benefit.

     
    more » « less
  4. Abstract

    Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes the ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) vs. conventional tillage (CT). We established replicated NT and CT plots in three CRP fields planted to continuous corn, switchgrass, or restored prairie. For the 2 yr following an initial soybean year in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and CO2emissions by 20% compared with CT conversion. Differences were higher in Year 1 than in Year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after Year 1. In all fields net CO2emissions (as measured by eddy covariance) were positive for the first 2 yr following CT establishment, but following NT establishment net CO2emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared with CT (−6.01 Mg CO2e ha−1 yr−1for NT vs. −0.25 Mg CO2e ha−1 yr−1for CT, on average). We also found that Intergovernmental Panel on Climate Change estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops to reduce C debt and maximize climate benefits.

     
    more » « less
  5. Abstract. Nitrogen (N) fertilizer inputs to agricultural soils area leading cause of nitrous oxide (N2O) emissions. Legume cover cropsare an alternative N source that can reduce agricultural N2O emissionscompared to fertilizer N. However, our understanding of episodic N2Oflux following cover crop incorporation by tillage is limited and hasfocused on single-species cover crops. Our study explores whether increasingcover crop functional diversity with a legume–grass mixture can reduce pulseemissions of N2O following tillage. In a field experiment, we plantedcrimson clover (Trifolium incarnatum L.), cereal rye (Secale cereal L.), a clover–rye mixture, and a no-covercontrol at two field sites with contrasting soil fertility properties inMichigan. We hypothesized that N2O flux following tillage of the covercrops would be lower in the mixture and rye compared to the clovertreatment because rye litter can decrease N mineralization rates. Wemeasured N2O for approximately 2 weeks following tillage to capturethe first peak in N2O emissions in each site. Across cover croptreatments, the higher-fertility site, CF, had greater cover crop biomass,2-fold-higher aboveground biomass N, and higher cumulative N2Oemissions than the lower-fertility site, KBS (413.4±67.5 vs. 230.8±42.5 g N2O-N ha−1; P=0.004). Therewas a significant treatment effect on daily emissions at both sites. AtCF, N2O fluxes were higher following clover than the control 6 d aftertillage. At KBS, fluxes from the mixture were higher than rye 8 and 11 dafter tillage. When controlling for soil fertility differences betweensites, clover and mixture led to approximately 2-fold-higher N2Oemissions compared to rye and fallow treatments. We found partial supportfor our hypothesis that N2O would be lower following incorporation ofthe mixture than clover. However, treatment patterns differed by site,suggesting that interactions between cover crop functional types andbackground soil fertility influence N2O emissions during cover cropdecomposition. 
    more » « less