skip to main content


Title: A Nonrepeating Fast Radio Burst in a Dwarf Host Galaxy
Abstract

We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.

 
more » « less
Award ID(s):
2206490 2206492
NSF-PAR ID:
10412134
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 67
Size(s):
["Article No. 67"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108Mand an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs.

     
    more » « less
  2. ABSTRACT We develop a sophisticated model of fast radio burst (FRB) observations, accounting for the intrinsic cosmological gas distribution and host galaxy contributions, and give the most detailed account yet of observational biases due to burst width, dispersion measure, and the exact telescope beamshape. Our results offer a significant increase in both accuracy and precision beyond those previously obtained. Using results from ASKAP and Parkes, we present our best-fitting FRB population parameters in a companion paper. Here, we consider in detail the expected and fitted distributions in redshift, dispersion measure, and signal to noise. We estimate that the unlocalized ASKAP FRBs arise from z < 0.5, with between a third and a half within z < 0.1. Our predicted source-counts (‘logN–logS’) distribution confirms previous indications of a steepening index near the Parkes detection threshold of 1 Jy ms. We find no evidence for a minimum FRB energy, and rule out Emin > 1039.0 erg at 90 per cent C.L. Importantly, we find that above a certain DM, observational biases cause the Macquart (DM–z) relation to become inverted, implying that the highest-DM events detected in the unlocalized Parkes and ASKAP samples are unlikely to be the most distant. More localized FRBs will be required to quantitatively estimate this effect, though its cause is a well-understood observational bias. Works assuming a 1–1 DM–z relation may therefore derive erroneous results. Our analysis of errors suggests that limiting factors in our analysis are understanding of FRB spectral behaviour, sensitivity response of search experiments, and the treatment of the repeating population and luminosity function. 
    more » « less
  3. Abstract

    The repeating fast radio burst FRB 20190520B is localized to a galaxy atz= 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm−3. Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delayτ(1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δνd(1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an Hαemission measure (galaxy frame) EMs= 620 pc cm−6× (T/104K)0.9, implying DMHαof order the value inferred from the FRB DM budget,DMh=1121138+89pc cm−3for plasma temperatures greater than the typical value 104K. Combiningτand DMhyields a nominal constraint on the scattering amplification from the host galaxyF˜G=1.50.3+0.8(pc2km)1/3, whereF˜describes turbulent density fluctuations andGrepresents the geometric leverage to scattering that depends on the location of the scattering material. For a two-screen scattering geometry whereτarises from the host galaxy and Δνdfrom the Milky Way, the implied distance between the FRB source and dominant scattering material is ≲100 pc. The host galaxy scattering and DM contributions support a novel technique for estimating FRB redshifts using theτ–DM relation, and are consistent with previous findings that scattering of localized FRBs is largely dominated by plasma within host galaxies and the Milky Way.

     
    more » « less
  4. Abstract

    The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution ofDMhost=430220+140or280170+140pccm3(observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to beF˜G4.511(pc2km)1/3, suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

     
    more » « less
  5. ABSTRACT

    We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $73_{-8}^{+12}$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median ${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $\gamma =-0.95_{-0.15}^{+0.18}$. We demonstrate with a sample of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.

     
    more » « less