skip to main content


Search for: All records

Award ID contains: 2206490

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a sample of well-localized fast radio bursts (FRBs) discovered by the MeerTRAP project at the MeerKAT telescope in South Africa. We discovered the three FRBs in single coherent tied-array beams and localized them to an area of ∼1 arcmin2. We investigate their burst properties, scattering, repetition rates, and localizations in a multiwavelength context. FRB 20201211A shows hints of scatter broadening but is otherwise consistent with instrumental dispersion smearing. For FRB 20210202D, we discovered a faint post-cursor burst separated by ∼200 ms, suggesting a distinct burst component or a repeat pulse. We attempt to associate the FRBs with host galaxy candidates. For FRB 20210408H, we tentatively (0.35–0.53 probability) identify a compatible host at a redshift ∼0.5. Additionally, we analyse the MeerTRAP survey properties, such as the survey coverage, fluence completeness, and their implications for the FRB population. Based on the entire sample of 11 MeerTRAP FRBs discovered by the end of 2021, we estimate the FRB all-sky rates and their scaling with the fluence threshold. The inferred FRB all-sky rates at 1.28 GHz are $8.2_{-4.6}^{+8.0}$ and $2.1_{-1.1}^{+1.8} \times 10^3 \: \text{sky}^{-1} \: \text{d}^{-1}$ above 0.66 and 3.44 Jy ms for the coherent and incoherent surveys, respectively. The scaling between the MeerTRAP rates is flatter than at higher fluences at the 1.4σ level. There seems to be a deficit of low-fluence FRBs, suggesting a break or turn-over in the rate versus fluence relation below 2 Jy ms. We speculate on cosmological or progenitor-intrinsic origins. The cumulative source counts within our surveys appear consistent with the Euclidean scaling.

     
    more » « less
  2. ABSTRACT

    We present the discovery of FRB 20210410D with the MeerKAT radio interferometer in South Africa, as part of the MeerTRAP commensal project. FRB 20210410D has a dispersion measure DM = 578.78 ± 2 ${\rm pc \, cm^{-3}}$ and was localized to subarcsec precision in the 2 s images made from the correlation data products. The localization enabled the association of the FRB with an optical galaxy at z = 0.1415, which when combined with the DM places it above the 3σ scatter of the Macquart relation. We attribute the excess DM to the host galaxy after accounting for contributions from the Milky Way’s interstellar medium and halo, and the combined effects of the intergalactic medium and intervening galaxies. This is the first FRB that is not associated with a dwarf galaxy to exhibit a likely large host galaxy DM contribution. We do not detect any continuum radio emission at the FRB position or from the host galaxy down to a 3σ rms of 14.4 $\mu$Jy beam−1. The FRB has a scattering delay of $29.4^{+2.8}_{-2.7}$ ms at 1 GHz, and exhibits candidate subpulses in the spectrum, which hint at the possibility of it being a repeating FRB. Although not constraining, we note that this FRB has not been seen to repeat in 7.28 h at 1.3 GHz with MeerKAT, 3 h at 2.4 GHz with Murriyang, and 5.7 h at simultaneous 2.3 GHz and 8.4 GHz observations with the Deep Space Network. We encourage further follow-up to establish a possible repeating nature.

     
    more » « less
  3. Abstract

    We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.

     
    more » « less
  4. Abstract

    We report on the commensal ASKAP detection of a fast radio burst (FRB), FRB 20211127I, and the detection of neutral hydrogen (Hi) emission in the FRB host galaxy, WALLABY J131913–185018 (hereafter W13–18). This collaboration between the CRAFT and WALLABY survey teams marks the fifth, and most distant, FRB host galaxy detected in Hi, not including the Milky Way. We find that W13–18 has an Himass ofMHI= 6.5 × 109M, an Hi-to-stellar mass ratio of 2.17, and coincides with a continuum radio source of flux density at 1.4 GHz of 1.3 mJy. The Higlobal spectrum of W13–18 appears to be asymmetric, albeit the Hiobservation has a low signal-to-noise ratio (S/N), and the galaxy itself appears modestly undisturbed. These properties are compared to the early literature of Hiemission detected in other FRB hosts to date, where either the Higlobal spectra were strongly asymmetric, or there were clearly disrupted Hiintensity map distributions. W13–18 lacks a sufficient S/N to determine whether it is significantly less asymmetric in its Hidistribution than previous examples of FRB host galaxies. However, there are no strong signs of a major interaction in the optical image of the host galaxy that would stimulate a burst of star formation and hence the production of putative FRB progenitors related to massive stars and their compact remnants.

     
    more » « less
  5. ABSTRACT

    We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $73_{-8}^{+12}$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median ${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $\gamma =-0.95_{-0.15}^{+0.18}$. We demonstrate with a sample of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.

     
    more » « less