High-achieving students in economically disadvantaged, rural schools lack access to advanced coursework necessary to pursue science, technology, engineering, and mathematics (STEM) educational and employment goals at the highest levels, contributing to the excellence gap. Out-of-school STEM programming offers one pathway to students’ talent development. Using a concurrent triangulation mixed-methods research design, this study was conducted to evaluate the experiences of 78 high-achieving students and their 32 teachers, participating in an extracurricular, school-based, STEM talent development program for rural students from economically disadvantaged communities. Findings suggest that students and teachers expressed satisfaction with program participation and that they thought more creatively and critically about their work. Results also showed that students’ perceptions of the mathematics and science activities were significantly different, which informs ways to improve programming for future high-achieving, rural students. These findings expand the literature supporting the use of informal STEM education environments for underserved gifted populations to increase engagement in and access to challenging curricula.
more »
« less
Developing Students’ Science, Technology, Engineering, and Mathematics Talent in Rural After-School Settings: Rural Educators’ Affordances and Barriers
This study uses a naturalistic inquiry approach to investigate how rural educators navigate the affordances and barriers of implementing an out-of-school program to identify and develop middle school STEM talent in rural communities. At the time of this study, the STEM program was in its fourth year of implementation. Participants included 34 educators and 324 students in Grades 6–8 across 10 school districts in a predominately rural state. We used maximum variation purposive sampling to select 3 of the 10 districts as case study sites. The cross-case analysis resulted in the themes of (a) exercising local control, (b) expanding community for advanced STEM learning, and (c) leveraging the intersectionality of rurality, local agency, and expanded resources. One implication is that when supported with resources, rural educators will leverage the systems of their schools and communities to create robust ecosystems for advanced STEM talent development.
more »
« less
- Award ID(s):
- 1713123
- PAR ID:
- 10412196
- Date Published:
- Journal Name:
- Journal for the Education of the Gifted
- Volume:
- 45
- Issue:
- 4
- ISSN:
- 0162-3532
- Page Range / eLocation ID:
- 381 to 403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The pipeline of highly trained STEM (science, technology, engineering, and mathematics) professionals has narrowed in recent decades, forcing society to re‐examine how schools are discovering and developing STEM talent. Of particular concern is the finding that rural students attend post‐secondary schools at lower rates than their urban counterparts, and when they do attend, they are less likely to graduate from STEM programs. One reason may be that they are not prepared for advanced STEM coursework because they lack access to essential STEM talent‐development programs in middle or high school. This creates excellence gaps, which exacerbate the narrowing STEM pipeline to the workforce. To address this, we formed a university–school partnership to develop an outside‐of‐school STEM talent development program, called STEM Excellence, for rural middle‐school students who attend under‐resourced schools. The aim of STEM Excellence was to increase students’ achievement and aspirations while empowering their teachers to develop local STEM programs grounded in developmental psychology theories. STEM Excellence integrated the Talent Development Megamodel Principles of ability, domains of talent, opportunity, and psychosocial variables. STEM Excellence also recognized the interplay of multiple person–environment systems as presented in the Bioecological Systems Model.more » « less
-
Our study investigates the first year of a two-year place-based education (PBE) professional development model that focuses on career development in rural middle schools through project-based learning (PBL) units. Rural science, technology, engineering, and mathematics (STEM) educators face unique challenges, including geographic isolation, limited resources, and reduced access to professional development opportunities, which can hinder the effective integration of career-oriented learning in the classroom. We addressed these challenges by implementing professional development in which school counselors and teachers collaborate to design PBL units aligned with rural community local needs and STEM careers. Using a descriptive multiple-case study methodology to document the experiences of three teams of educators, we used cross-case analysis to explore how the teams integrated PBL and PBE principles to foster meaningful learning experiences and enhance career awareness among students. The research questions focused on each team’s implementation of the PBL units based on key PBL design elements and how they integrated local community connections and places. Initial findings suggest that while teams effectively engaged with community members and integrated STEM career connections, they faced challenges in broadly applying learning and assessment practices. We highlight the potential of PBE to enhance rural STEM education and emphasize the need for long-term professional development to equip teachers with the skills necessary to integrate STEM content and career development effectively.more » « less
-
School-to-career pathways not only represent a student’s journey, but they also represent the educational program context; to understand the pathway, one must understand the geographic, political, and social conditions that led to the program’s creation. To determine the kinds of pathways advanced manufacturing (AM) programs in rural Northwest Florida community and state colleges enabled for their students, we interviewed faculty and administrators about their AM programs’ historical emergence. In this paper, we present five detailed AM program “origin stories,” using a multiple case study methodology. These origin stories allowed us to explore how rural AM postsecondary programs have evolved in organizational structure, curriculum content, employer relations, and student pathways facilitation. We gathered data to discern 1) commonalities and unique features in AM programs’ initiation impetus; 2) current AM program, faculty, and student profiles; and 3) significant AM program challenges and priorities in rural settings, such as institutional commitment to long-term economic health. In our findings, we highlight how active participation in diverse community and industry collaborations serves to establish and grow AM educational pathways tailored explicitly for the immediate community. For example, participants share innovative partnership programming and certificate development that enabled seminal two-year engineering technology and engineering technician education opportunities. We also identified that the ability of rural programs to offer instruction in advanced physical spaces requires an ongoing commitment to appropriate resources, support that is variously obtained from the institution, local employers, or some combination of stakeholders. Through our methodology and findings, we aim to contribute to a holistic understanding of how to study school-to-career pathways. This study investigates how rural AM programs can advance to achieve competitive growth.more » « less
-
Our NSF-funded ITEST project focuses on the collaborative design, implementation, and study of recurrent hands-on engineering activities with middle school youth in three rural communities in or near Appalachia. To achieve this aim, our team of faculty and graduate students partner with school educators and industry experts embedded in students’ local communities to collectively develop curriculum to aim at teacher-identified science standard and facilitate regular in-class interventions throughout the academic year. Leveraging local expertise is especially critical in this project because family pressures, cultural milieu, and preference for local, stable jobs play considerable roles in how Appalachian youth choose possible careers. Our partner communities have voluntarily opted to participate with us in a shared implementation-research program and as our project unfolds we are responsive to community-identified needs and preferences while maintaining the research program’s integrity. Our primary focus has been working to incorporate hands-on activities into science classrooms aimed at state science standards in recognition of the demands placed on teachers to align classroom time with state standards and associated standardized achievement tests. Our focus on serving diverse communities while being attentive to relevant research such as the preference for local, stable jobs attention to cultural relevance led us to reach out to advanced manufacturing facilities based in the target communities in order to enhance the connection students and teachers feel to local engineers. Each manufacturer has committed to designating several employees (engineers) to co-facilitate interventions six times each academic year. Launching our project has involved coordination across stakeholder groups to understand distinct values, goals, strengths and needs. In the first academic year, we are working with 9 different 6th grade science teachers across 7 schools in 3 counties. Co-facilitating in the classroom are representatives from our project team, graduate student volunteers from across the college of engineering, and volunteering engineers from our three industry partners. Developing this multi-stakeholder partnership has involved discussions and approvals across both school systems (e.g., superintendents, STEM coordinators, teachers) and our industry partners (e.g., managers, HR staff, volunteering engineers). The aim of this engagement-in-practice paper is to explore our lessons learned in navigating the day-to-day challenges of (1) developing and facilitating curriculum at the intersection of science standards, hands-on activities, cultural relevancy, and engineering thinking, (2) collaborating with volunteers from our industry partners and within our own college of engineering in order to deliver content in every science class of our 9 6th grade teachers one full school day/month, and (3) adapting to emergent needs that arise due to school and division differences (e.g., logistics of scheduling and curriculum pacing), community differences across our three counties (e.g., available resources in schools), and partner constraints.more » « less
An official website of the United States government

