skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1713123

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The pipeline of highly trained STEM (science, technology, engineering, and mathematics) professionals has narrowed in recent decades, forcing society to re‐examine how schools are discovering and developing STEM talent. Of particular concern is the finding that rural students attend post‐secondary schools at lower rates than their urban counterparts, and when they do attend, they are less likely to graduate from STEM programs. One reason may be that they are not prepared for advanced STEM coursework because they lack access to essential STEM talent‐development programs in middle or high school. This creates excellence gaps, which exacerbate the narrowing STEM pipeline to the workforce. To address this, we formed a university–school partnership to develop an outside‐of‐school STEM talent development program, called STEM Excellence, for rural middle‐school students who attend under‐resourced schools. The aim of STEM Excellence was to increase students’ achievement and aspirations while empowering their teachers to develop local STEM programs grounded in developmental psychology theories. STEM Excellence integrated the Talent Development Megamodel Principles of ability, domains of talent, opportunity, and psychosocial variables. STEM Excellence also recognized the interplay of multiple person–environment systems as presented in the Bioecological Systems Model. 
    more » « less
  2. This study uses a naturalistic inquiry approach to investigate how rural educators navigate the affordances and barriers of implementing an out-of-school program to identify and develop middle school STEM talent in rural communities. At the time of this study, the STEM program was in its fourth year of implementation. Participants included 34 educators and 324 students in Grades 6–8 across 10 school districts in a predominately rural state. We used maximum variation purposive sampling to select 3 of the 10 districts as case study sites. The cross-case analysis resulted in the themes of (a) exercising local control, (b) expanding community for advanced STEM learning, and (c) leveraging the intersectionality of rurality, local agency, and expanded resources. One implication is that when supported with resources, rural educators will leverage the systems of their schools and communities to create robust ecosystems for advanced STEM talent development. 
    more » « less
  3. Rural schools, especially smaller ones, offer enormous opportunities for teachers to get to know their students and to cultivate their academic talents. However, students with potential in science, technology, engineering, and mathematics (STEM) face specific obstacles to having their talents fully realized in rural schools. Joni Lakin, Tamra Stambaugh, Lori Ihrig, Duhita Mahatmya, and Susan G. Assouline describe the STEM Excellence and Leadership project from the University of Iowa, which seeks to equip rural teachers in grades 5-8 with the skills and knowledge to recognize and grow STEM talent in rural areas. Examples of success and lessons learned are shared. 
    more » « less
  4. High-achieving students in economically disadvantaged, rural schools lack access to advanced coursework necessary to pursue science, technology, engineering, and mathematics (STEM) educational and employment goals at the highest levels, contributing to the excellence gap. Out-of-school STEM programming offers one pathway to students’ talent development. Using a concurrent triangulation mixed-methods research design, this study was conducted to evaluate the experiences of 78 high-achieving students and their 32 teachers, participating in an extracurricular, school-based, STEM talent development program for rural students from economically disadvantaged communities. Findings suggest that students and teachers expressed satisfaction with program participation and that they thought more creatively and critically about their work. Results also showed that students’ perceptions of the mathematics and science activities were significantly different, which informs ways to improve programming for future high-achieving, rural students. These findings expand the literature supporting the use of informal STEM education environments for underserved gifted populations to increase engagement in and access to challenging curricula. 
    more » « less
  5. High-potential students from underresourced rural schools face barriers that reduce options for academic advancement, which widens the excellence gap between them and their more affluent, but similar ability peers. The goal of this study was to investigate the effectiveness of an expanded above-level testing model to identify high-potential rural students for an extracurricular math and science enrichment program. Results from our analyses indicated that a more inclusive talent pool differentiated among high achievers to find greater percentages (13%) of talented students compared with most gifted programs (3% to 5%) or Talent Search programs (5%). Overall, students’ math and science scores were related to a 75% and 50%, respectively, greater odds in being identified for the extracurricular program. Regardless of program participation, all talent pool students increased their math and science achievement; however, there were some significant gender differences. 
    more » « less