skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic fingerprints of synthetic antiferromagnet nanostructures with interfacial Dzyaloshinskii–Moriya interaction
Synthetic antiferromagnet (SAF) nanostructures with an interfacial Dzyaloshinskii–Moriya interaction can host topologically distinct spin textures, such as skyrmions, and therefore, are regarded as promising candidates for both spintronics and magnonics applications. Here, we present comprehensive micromagnetic simulations of such material systems and discuss the rich phase diagrams that contain various types of magnetic configurations. Aside from the static properties, we further discuss the resonant excitations of the calculated magnetic states, which include individual skyrmions and skyrmioniums. Finally, the internal modes of SAF skyrmion clusters are studied and discussed in the context of magnetic sensing applications based on the dynamic fingerprint in broadband ferromagnetic resonance measurements.  more » « less
Award ID(s):
1720633
PAR ID:
10412209
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
4
ISSN:
0021-8979
Page Range / eLocation ID:
043903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic monopoles, despite their ongoing experimental search as elementary particles, have inspired the discovery of analogous excitations in condensed matter systems. In chiral condensed matter systems, emergent monopoles are responsible for the onset of transitions between topologically distinct states and phases, such as in the case of transitions from helical and conical phase to A-phase comprising periodic arrays of skyrmions. By combining numerical modeling and optical characterizations, we describe how different geometrical configurations of skyrmions terminating at monopoles can be realized in liquid crystals and liquid crystal ferromagnets. We demonstrate how these complex structures can be effectively manipulated by external magnetic and electric fields. Furthermore, we discuss how our findings may hint at similar dynamics in other physical systems and their potential applications. 
    more » « less
  2. Abstract Creating materials that do not exist in nature can lead to breakthroughs in science and technology. Magnetic skyrmions are topological excitations that have attracted great attention recently for their potential applications in low power, ultrahigh density memory. A major challenge has been to find materials that meet the dual requirement of small skyrmions stable at room temperature. Here we meet both these goals by developing epitaxial FeGe films with excess Fe using atomic layer molecular beam epitaxy (MBE) far from thermal equilibrium. Our atomic layer design permits the incorporation of 20% excess Fe while maintaining a non-centrosymmetric crystal structure supported by theoretical calculations and necessary for stabilizing skyrmions. We show that the Curie temperature is well above room temperature, and that the skyrmions have sizes down to 15 nm as imaged by Lorentz transmission electron microscopy (LTEM) and magnetic force microscopy (MFM). The presence of skyrmions coincides with a topological Hall effect-like resistivity. These atomically tailored materials hold promise for future ultrahigh density magnetic memory applications. 
    more » « less
  3. Abstract Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices. 
    more » « less
  4. Abstract Magnetic skyrmions are of great interest to both fundamental research and applications in post-von-Neumann computing devices. The successful implementation of skyrmionic devices requires functionalities of skyrmions with effective controls. Here we show that the local dynamics of skyrmions, in contrast to the global dynamics of a skyrmion as a whole, can be introduced to provide effective functionalities for versatile computing. A single skyrmion interacting with local pinning centres under thermal effects can fluctuate in time and switch between a small-skyrmion and a large-skyrmion state, thereby serving as a robust true random number generator for probabilistic computing. Moreover, neighbouring skyrmions exhibit an anti-correlated coupling in their fluctuation dynamics. Both the switching probability and the dynamic coupling strength can be tuned by modifying the applied magnetic field and spin current. Our results could lead to progress in developing magnetic skyrmionic devices with high tunability and efficient controls. 
    more » « less
  5. Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals. 
    more » « less