The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a “plasma membrane on a chip,” also known as a supported lipid bilayer. Here, we create the “plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein–protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein–protein and protein–lipid interactions in a convenient, cell-free platform.
more »
« less
Multiscale compression-induced restructuring of stacked lipid bilayers: From buckling delamination to molecular packing
Lipid membranes in nature adapt and reconfigure to changes in composition, temperature, humidity, and mechanics. For instance, the oscillating mechanical forces on lung cells and alveoli influence membrane synthesis and structure during breathing. However, despite advances in the understanding of lipid membrane phase behavior and mechanics of tissue, there is a critical knowledge gap regarding the response of lipid membranes to micromechanical forces. Most studies of lipid membrane mechanics use supported lipid bilayer systems missing the structural complexity of pulmonary lipids in alveolar membranes comprising multi-bilayer interconnected stacks. Here, we elucidate the collective response of the major component of pulmonary lipids to strain in the form of multi-bilayer stacks supported on flexible elastomer substrates. We utilize X-ray diffraction, scanning probe microscopy, confocal microscopy, and molecular dynamics simulation to show that lipid multilayered films both in gel and fluid states evolve structurally and mechanically in response to compression at multiple length scales. Specifically, compression leads to increased disorder of lipid alkyl chains comparable to the effect of cholesterol on gel phases as a direct result of the formation of nanoscale undulations in the lipid multilayers, also inducing buckling delamination and enhancing multi-bilayer alignment. We propose this cooperative short- and long-range reconfiguration of lipid multilayered films under compression constitutes a mechanism to accommodate stress and substrate topography. Our work raises fundamental insights regarding the adaptability of complex lipid membranes to mechanical stimuli. This is critical to several technologies requiring mechanically reconfigurable surfaces such as the development of electronic devices interfacing biological materials.
more »
« less
- Award ID(s):
- 1720633
- PAR ID:
- 10412218
- Editor(s):
- Johnson, Colin
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 12
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0275079
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electrostatic interactions drive molecular assembly and organization in the plasma membrane. Specific protein-lipid interactions, however, are difficult to resolve. Here we report on a unique approach to investigate these interactions with time-resolved fluorescence spectroscopy. The experiments were performed on a model membrane system consisting of a supported lipid bilayer with an asymmetric distribution of PIP2 in the upper leaflet of the bilayer. The bilayer also contained nickel-chelating lipids that bind to a histidine-tagged peptide of interest. Both the peptide and the lipid were labeled with orthogonal fluorescent probes, so that diffusion and binding could be measured with two-color, pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). Our PIE-FCCS data showed significant lipid-peptide cross-correlation between PIP2 lipids and membrane-bound cationic peptides. Cross-correlation is a direct indication of lipid-peptide binding and complexation. Together with mobility data, we quantified the degree of binding, which offers new insight into this class of lipid-peptide interactions. Overall, this is the first report of lipid-peptide cross-correlation by FCCS, and provides a new route to quantifying the interactions between proteins and lipid membranes, a key interface in cell signaling.more » « less
-
Membrane undulations play a vital role in many biological processes, including the regulation of membrane protein activity. The asymmetric lipid composition of most biological membranes complicates theoretical description of these bending fluctuations, yet experimental data that would inform any such a theory is scarce. Here, we used neutron spin-echo (NSE) spectroscopy to measure the bending fluctuations of large unilamellar vesicles (LUV) having an asymmetric transbilayer distribution of high- and low-melting lipids. The asymmetric vesicles were prepared using cyclodextrin-mediated lipid exchange, and were composed of an outer leaflet enriched in egg sphingomyelin (ESM) and an inner leaflet enriched in 1-palmitoyl-2-oleoyl-phosphoethanolamine (POPE), which have main transition temperatures of 37 °C and 25 °C, respectively. The overall membrane bending rigidity was measured at three temperatures: 15 °C, where both lipids are in a gel state; 45 °C, where both lipids are in a fluid state; and 30 °C, where there is gel-fluid co-existence. Remarkably, the dynamics for the fluid asymmetric LUVs (aLUVs) at 30 °C and 45 °C do not follow trends predicted by their symmetric counterparts. At 30 °C, compositional asymmetry suppressed the bending fluctuations, with the asymmetric bilayer exhibiting a larger bending modulus than that of symmetric bilayers corresponding to either the outer or inner leaflet. We conclude that the compositional asymmetry and leaflet coupling influence the internal dissipation within the bilayer and result in membrane properties that cannot be directly predicted from corresponding symmetric bilayers.more » « less
-
null (Ed.)Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aβ) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aβ neurotoxicity. Here we examine the composition, phase behaviour, and Aβ interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the ‘membrane pacemaker’ hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aβ disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aβ exposure.more » « less
-
We describe a method to determine membrane bending rigidity from capacitance measurements on large area, free-standing, planar, biomembranes. The bending rigidity of lipid membranes is an important biological mechanical property that is commonly optically measured in vesicles, but difficult to quantify in a planar, unsupported system. To accomplish this, we simultaneously image and apply an electric potential to free-standing, millimeter area, planar lipid bilayers composed of DOPC and DOPG phospholipids to measure the membrane Young’s (elasticity) modulus. The bilayer is then modeled as two adjacent thin elastic films to calculate bending rigidity from the electromechanical response of the membrane to the applied field. Using DOPC, we show that bending rigidities determined by this approach are in good agreement with the existing work using neutron spin echo on vesicles, atomic force spectroscopy on supported lipid bilayers, and micropipette aspiration of giant unilamellar vesicles. We study the effect of asymmetric calcium concentration on symmetric DOPC and DOPG membranes and quantify the resulting changes in bending rigidity. This platform offers the ability to create planar bilayers of controlled lipid composition and aqueous ionic environment, with the ability to asymmetrically alter both. We aim to leverage this high degree of compositional and environmental control, along with the capacity to measure physical properties, in the study of various biological processes in the future.more » « less