Micro vortex generator (MVG) is a currently facile, robust, and feasible device for supersonic and hypersonic flow control. The purpose of this study is to investigate the impact on SWBLI from the streamwise location of MVG. Large eddy simulation (LES) was conducted on MVG controlled supersonic ramp flow to reveal the sensitivity of MVG streamwise position on shock-wave boundary-layer interaction (SWBLI) control. Numerical cases with minor different distances between MVG and ramp corner are carried out. The results are analyzed in time-averaged and instantaneous view, respectively. The results show that streamwise position has a significant effect on SWBLI in some aspects. With minor changes on the streamwise position, the ring-like vortices generated by MVG were very similar, with only small changes in height and intensity. However, the small changes made on the ring-like vortices produced relatively significant changes to the separation region in front of the ramp. In terms of the time-averaged solution, the farther the MVG is from the ramp, the higher the ring-like vortices are lifted, and the shock wave is also disturbed/reduced more strongly. Further, the flow separation zone on the wall also appears smaller. The results of this study play a guiding role for further optimal configuration of MVG in flow control.
more »
« less
Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers
Modal analysis on micro-vortex generator (MVG)-controlled supersonic flow at different Mach numbers is performed in this paper. The purpose of this investigation is to clarify the different properties of streamwise and ring-like vortical modes, and the effects of different Mach numbers on these modes, to further understand the vortical structures as they travel from MVG down to the shock wave/boundary-layer interaction (SWBLI) region. To this end, a high order and high resolution large eddy simulation (LES) was carried out, which identified the vortical structures behind the MVG and in the shock wave/boundary-layer interaction (SWBLI) region in the supersonic ramp flow with flow speeds of three different Mach numbers 1.5, 2.0, and 2.5. The proper orthogonal decomposition (POD) then was adopted to investigate the modes of the fluctuation flow field. It emerged that the streamwise and ring-like vortical modes were disparate in energy distribution, structural order, frequency and amplitude. Furthermore, it showed that as the Mach number increased, the energy of the streamwise modes increased while the opposite was true for ring-like modes; and the streamwise modal structures were altered more significantly than the ring-like modes, and the frequency of each mode scarcely varied. It was also found that the streamwise vortices absorbed energy from the ring-like vortices while they traveled from the MVG down to the SWBLI region, but the dominant frequency of each mode rarely changed during this process.
more »
« less
- Award ID(s):
- 1912191
- PAR ID:
- 10412275
- Date Published:
- Journal Name:
- Processes
- Volume:
- 10
- Issue:
- 8
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 1456
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The instability and transition to turbulence and its evolution in pulsatile flows, which involve reverse flows and unsteady flow separations, is the primary focus of this experimental work. A piston driven by a programmable DC servo motor was used to set-up a water flow system and provide the pulsation characteristics. Time-resolved particle image velocimetry data were acquired in a refractive index matching set-up by using a continuous wave laser and a high-frame-rate digital camera. The position of the piston was continuously recorded by a laser proximity sensor. Five different experiments were carried out with Reynolds numbers in the range of 535–4825 and Womersley numbers from 11.91 to 23.82. The non-stationarity of the data was addressed by incorporating trend removal methods involving low- and high-pass filtering of the data, and using empirical mode decomposition together with the relevant Hilbert–Huang transform to determine the intrinsic mode functions. This latter method is more appropriate for nonlinear and non-stationary cases, for which traditional analysis involving classical Fourier decomposition is not directly applicable. It was found that transition to turbulence is a spontaneous event covering the whole near-wall region. The instantaneous vorticity profiles show the development of a large-scale ring-like attached wall vortical layer (WVL) with smaller vortices of higher frequencies than the pulsation frequency superimposed, which point to a shear layer Kelvin–Helmholtz (K–H) type of instability. Inflectional instability leads to flow separation and the formation of a major roll-up structure with the K–H vortices superimposed. This structure breaks down in the azimuthal direction into smaller turbulence patches with vortical content, which appears to be the prevailing structural content of the flow at each investigated Reynolds number ( Re ). At higher Re numbers, the strength and extent of the vortices are larger and substantial disturbances appear in the free stream region of the flow, which are typical of pipe flows at transitional Re numbers. Turbulence appears to be produced at the locations of maximum or minimum vorticity within the attached WVL, in the ridges between the K–H vortices around the separated WVL and the upstream side of the secondary vortex where the flow impinges on the wall. This wall turbulence breaks away into the middle section of the pipe, at approximately $$Re \ge 2200$$ , by strong eruptions of the K–H vortices.more » « less
-
null (Ed.)Flight vehicles that operate in the supersonic regime can be subject to adverse fluid-structure interactions due to their lightweight design. The presence of geometric obstructions such as control surfaces or fins can induce compression shocks that can interact with the boundary layer, leading to flow separation. The interaction of flow, compression shock and structural dynamics is very difficult to model and currently only poorly understood. This work investigates experimentally the interaction between a compliant panel in a Mach 2 flow under a ramp-induced shock-wave/boundary layer interaction (SWBLI). Brass panels of length 4.8" and width 2.5" and different thicknesses (h=0.020", 0.016", 0.012" and 0.010") are investigated. Tests are performed both with and without a compression ramp installed. This direct comparison allows characterization of the effect of the SWBLI on the system dynamics. High-speed stereoscopic digital image correlation (DIC) and fast-response pressure sensitive paint (PSP) are used to obtain simultaneous full field deformation and surface pressure of the panels. The results show that the shock induced by the 20compression ramp leads to separation of the turbulent boundary layer close to the ramp starting at about 80% of the panel length. This results in a region of large pressure fluctuations which primarily increase the vibration amplitude of the second panel mode. Analysis of the fundamental mode, which contains most of the vibration energy of the panel, shows that the SWBLI does not lead to changes of this mode, neither in frequency, amplitude or mode shape. On the other hand, analysis of the shock foot motion shows that the shock primarily oscillates at the fundamental frequency of the panel. This means that while the shock and panel oscillate at the same frequency, it is not two-way coupling. The panel vibration dictates the motion of the shock, but the shock (or rather the SWBLI) does not modify the fundamental panel vibration beyond the forcing provided by the turbulent boundary layer. Full field surface pressure predictions are made using linearized potential flow theory, which relates the local slope of the panel to the surface pressure. Results are found to be in good agreement in the region of attached flow.more » « less
-
Flight vehicles that operate in the supersonic regime can be subject to adverse fluid–structure interactions due to their lightweight design. The presence of geometric obstructions such as control surfaces or fins can induce shocks that can interact with the boundary layer, leading to flow separation. This work investigates experimentally the interaction between a compliant panel in a Mach 2 flow under a compression ramp-induced shock-wave/boundary-layer interaction (SBLI). Thin brass panels of different thickness are investigated in a wind tunnel. Tests are performed both with and without a 20◦ compression ramp installed. This direct comparison allows characterization of the effect of the SBLI on the system dynamics. High-speed stereoscopic digital image correlation (DIC) and fast-response pressure sensitive paint (PSP) are used to obtain simultaneous measurements of full field deformation and surface pressure of the panels. The panel vibration is dominated by the first bending mode. Despite the forcing of the separation shock foot, the presence of the SBLI does not significantly modify the operational deflection shape, frequency, and amplitude of the dominant vibration mode, beyond what is observed for the no-SBLI case. On the other hand, analysis of the shock foot motion shows that the shock primarily oscillates at the first natural frequency of the panel. This leads to the conclusion that the shock foot oscillation is driven by the panel vibration in a one-way coupling mechanism. The SBLI does modify the higher modes, which is likely due to localized forcing by the separation shock foot. Full-field surface pressure predictions are made using first order piston theory. Results show that the fluid–structure interaction is dominated by the large region of attached flow upstream of the shock foot.more » « less
-
We employ numerically implicit subgrid-scale modeling provided by the well-known streamlined upwind/Petrov–Galerkin stabilization for the finite element discretization of advection–diffusion problems in a Large Eddy Simulation (LES) approach. Whereas its original purpose was to provide sufficient algorithmic dissipation for a stable and convergent numerical method, more recently, it has been utilized as a subgrid-scale (SGS) model to account for the effect of small scales, unresolvable by the discretization. The freestream Mach number is 2.5, and direct comparison with a DNS database from our research group, as well as with experiments from the literature of adiabatic supersonic spatially turbulent boundary layers, is performed. Turbulent inflow conditions are generated via our dynamic rescaling–recycling approach, recently extended to high-speed flows. Focus is given to the assessment of the resolved Reynolds stresses. In addition, flow visualization is performed to obtain a much better insight into the physics of the flow. A weak compressibility effect is observed on thermal turbulent structures based on two-point correlations (IC vs. supersonic). The Reynolds analogy (u′ vs. t′) approximately holds for the supersonic regime, but to a lesser extent than previously observed in incompressible (IC) turbulent boundary layers, where temperature was assumed as a passive scalar. A much longer power law behavior of the mean streamwise velocity is computed in the outer region when compared to the log law at Mach 2.5. Implicit LES has shown very good performance in Mach 2.5 adiabatic flat plates in terms of the mean flow (i.e., Cf and UVD+). iLES significantly overpredicts the peak values of u′, and consequently Reynolds shear stress peaks, in the buffer layer. However, excellent agreement between the turbulence intensities and Reynolds shear stresses is accomplished in the outer region by the present iLES with respect to the external DNS database at similar Reynolds numbers.more » « less