Abstract The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors. 
                        more » 
                        « less   
                    
                            
                            Influence of Climate and Coastal Flooding on Eastern Red Cedar Growth along a Marsh-Forest Ecotone
                        
                    
    
            Coastal forests in the Mid-Atlantic region are threatened by sea level rise through chronic and episodic salinization and hydrologic alterations, leading to inland marsh migration and the occurrence of ghost forests. This study uses dendrochronology to explore the impact of rising sea level on the annual growth of Juniperus virginiana (the Eastern red cedar) at the St. Jones component of the Delaware National Estuarine Research Reserve in Dover, DE. Chronologies from low and high elevations were developed, and a difference chronology (high–low) was generated. A rapid field assessment of tree stress indicated greater stress in low elevation trees, and low elevation soil tests showed higher soil moisture and salt content compared to samples from high elevation. Ring width indices were analyzed in relation to water level, precipitation, the Standardized Precipitation Evapotranspiration Index, and temperature, with Pearson’s correlation analysis. Trees growing at low elevation showed greater climate sensitivity and responded favorably to cool, wet summers. Over time, correlations between growth and climate variables decreased, while negative correlations with tidal water level increased—a pattern that presented nearly a decade earlier in the low elevation system. Given the widespread distribution of the Eastern red cedar and its sensitivity to changes in sea level, this species may be particularly useful as a sentinel of change in coastal landscapes as sea levels rise. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2012484
- PAR ID:
- 10412356
- Date Published:
- Journal Name:
- Forests
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 1999-4907
- Page Range / eLocation ID:
- 862
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Sea level rise and storm surges affect coastal forests along low‐lying shorelines. Salinization and flooding kill trees and favour the encroachment of salt‐tolerant marsh vegetation. The hydrology of this ecological transition is complex and requires a multidisciplinary approach. Sea level rise (press) and storms (pulses) act on different timescales, affecting the forest vegetation in different ways. Salinization can occur either by vertical infiltration during flooding or from the aquifer driven by tides and sea level rise. Here, we detail the ecohydrological processes acting in the critical zone of retreating coastal forests. An increase in sea level has a three‐pronged effect on flooding and salinization: It raises the maximum elevation of storm surges, shifts the freshwater‐saltwater interface inland, and elevates the water table, leading to surface flooding from below. Trees can modify their root systems and local soil hydrology to better withstand salinization. Hydrological stress from intermittent storm surges inhibits tree growth, as evidenced by tree ring analysis. Tree rings also reveal a lag between the time when tree growth significantly slows and when the tree ultimately dies. Tree dieback reduces transpiration, retaining more water in the soil and creating conditions more favourable for flooding. Sedimentation from storm waters combined to organic matter decomposition can change the landscape, affecting flooding and runoff. Our results indicate that only a multidisciplinary approach can fully capture the ecohydrology of retreating forests in a period of accelerated sea level rise.more » « less
- 
            Abstract Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea‐level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low‐elevation forests along the US mid‐Atlantic coast have survived despite undergoing relative sea‐level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi‐decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea‐level rise have yet to be realized.more » « less
- 
            Abstract Southwestern North America has experienced significant temperature increases over the last century, leading to intensified droughts that significantly affect montane forests. Although tree‐ring data have provided long‐term context for this recent drought severity, the varying physiological responses of trees to climate variability make it challenging to disentangle the combined influence of temperature and soil moisture. Here we investigate complex climate‐growth relationships in Rocky Mountain bristlecone pine (Pinus aristata) at a low‐elevation and a high‐elevation site using quantitative wood anatomy (QWA). Significant correlations with climate were found for low‐elevation tree‐ring width (TRW) and earlywood chronologies, including positive correlations with spring and early summer precipitation and drought indices and negative correlations with spring and early summer maximum temperatures. At high elevations, TRW and earlywood chronologies show positive responses to summer moisture, whereas latewood chronologies correlate positively with August and September maximum temperatures and negatively with August precipitation. We leverage this differing seasonality of moisture and temperature signals and compare the QWA data to known droughts. The earlywood lumen area is found to be highly responsive to drought because of its physiological reliance on water availability for maintaining turgor pressure during cell enlargement. We also observed a decline in temperature sensitivity at the high elevation site, suggesting shifts in the dominance of limiting factors. Integrating QWA with traditional dendrochronology improves interpretations of tree‐ring data for use in climate reconstruction, offering detailed insights into tree physiological responses and the mix of environmental and developmental controls on cell growth.more » « less
- 
            The movement of salt marshes into uplands and marsh submergence as sea level rises is well documented; however, predicting how coastal marshes will respond to rising sea levels is constrained by a lack of process-based understanding of how various marsh zones adjust to changes in sea level. To assess the way in which salt-marsh zones differ in their elevation response to sea-level change, and to evaluate how potential hydrologic drivers influence the response, surface elevation tables, marker horizons, and shallow rod surface elevation tables were installed in a Virginia salt marsh in three zones that differed in elevation and vegetation type. Decadal rates of elevation change, surface accretion, and shallow subsidence or expansion were examined in the context of hydrologic drivers that included local sea-level rise, flooding frequency, hurricane storm-surge, and precipitation. Surface elevation increases were fastest in the low-elevation zone, intermediate in the middle-elevation zone, and slowest in the high-elevation zone. These rates are similar to (low- and middle-marsh) or less than (high-marsh) local rates of sea-level rise. Root-zone expansion, presumably due to root growth and organic matter accumulation, varied among the three salt marsh zones and accounted for 37%, but probably more, of the increase in marsh surface elevation. We infer that, during marsh transgression, soil-forming processes shift from biogenic (high marsh) to minerogenic (low marsh) in response, either directly or indirectly, to changing hydrologic drivers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    