skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Asymmetric root distributions reveal press–pulse responses in retreating coastal forests
Abstract

The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors.

 
more » « less
Award ID(s):
1654374 1832221
NSF-PAR ID:
10443847
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
102
Issue:
10
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea‐level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low‐elevation forests along the US mid‐Atlantic coast have survived despite undergoing relative sea‐level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi‐decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea‐level rise have yet to be realized.

     
    more » « less
  2. Abstract Ghost forests, consisting of dead trees adjacent to marshes, are a striking feature of low-lying coastal and estuarine landscapes, and they represent the migration of coastal ecosystems with relative sea-level rise (RSLR). Although ghost forests have been observed along many coastal margins, rates of ecosystem change and their dependence on RSLR remain poorly constrained. Here, we reconstructed forest retreat rates using sediment coring and historical imagery at five sites along the Mid-Atlantic coast of the United States, a hotspot for accelerated RSLR. We found that the elevation of the marsh-forest boundary generally increased with RSLR over the past 2000 yr, and that retreat accelerated concurrently with the late 19th century acceleration in global sea level. Lateral retreat rates increased through time for most sampling intervals over the past 150 yr, and modern lateral retreat rates are 2 to 14 times faster than pre-industrial rates at all sites. Substantial deviations between RSLR and forest response are consistent with previous observations that episodic disturbance facilitates the mortality of adult trees. Nevertheless, our work suggests that RSLR is the primary determinant of coastal forest extent, and that ghost forests represent a direct and prominent visual indicator of climate change. 
    more » « less
  3. Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink. Sea-level-driven tidal wetland degradation and upland forest mortality threaten coastal carbon pools, but responses of the broader coastal landscape to interacting facets of climate change remain poorly understood. Here, we use 36 years of satellite observations across the mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the amount of carbon stored in the biomass of coastal ecosystems despite substantial areal loss. We find that sea-level-driven reductions in wetland and low-lying forest biomass were largely confined to areas less than 2 m above sea level, whereas the otherwise warmer and wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across the entire coastal landscape, climate-driven upland greening offset sea-level-driven biomass losses, such that the net impact of climate change was to increase the amount of carbon stored in coastal vegetation. These results point to a fundamental decoupling between upland and wetland carbon trends that can only be understood by integrating observations across traditional ecosystem boundaries. This holistic approach may provide a template for quantifying carbon–climate feedbacks and other aspects of coastal change that extend beyond sea-level rise alone. 
    more » « less
  4. Coastal forests in the Mid-Atlantic region are threatened by sea level rise through chronic and episodic salinization and hydrologic alterations, leading to inland marsh migration and the occurrence of ghost forests. This study uses dendrochronology to explore the impact of rising sea level on the annual growth of Juniperus virginiana (the Eastern red cedar) at the St. Jones component of the Delaware National Estuarine Research Reserve in Dover, DE. Chronologies from low and high elevations were developed, and a difference chronology (high–low) was generated. A rapid field assessment of tree stress indicated greater stress in low elevation trees, and low elevation soil tests showed higher soil moisture and salt content compared to samples from high elevation. Ring width indices were analyzed in relation to water level, precipitation, the Standardized Precipitation Evapotranspiration Index, and temperature, with Pearson’s correlation analysis. Trees growing at low elevation showed greater climate sensitivity and responded favorably to cool, wet summers. Over time, correlations between growth and climate variables decreased, while negative correlations with tidal water level increased—a pattern that presented nearly a decade earlier in the low elevation system. Given the widespread distribution of the Eastern red cedar and its sensitivity to changes in sea level, this species may be particularly useful as a sentinel of change in coastal landscapes as sea levels rise. 
    more » « less
  5. Abstract

    Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.

     
    more » « less