Abstract Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea‐level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low‐elevation forests along the US mid‐Atlantic coast have survived despite undergoing relative sea‐level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi‐decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea‐level rise have yet to be realized. 
                        more » 
                        « less   
                    
                            
                            Asymmetric root distributions reveal press–pulse responses in retreating coastal forests
                        
                    
    
            Abstract The impacts of climate change on ecosystems are manifested in how organisms respond to episodic and continuous stressors. The conversion of coastal forests to salt marshes represents a prominent example of ecosystem state change, driven by the continuous stress of sea‐level rise (press), and episodic storms (pulse). Here, we measured the rooting dimension and fall direction of 143 windthrown eastern red cedar (Juniperus virginiana) trees in a rapidly retreating coastal forest in Chesapeake Bay (USA). We found that tree roots were distributed asymmetrically away from the leading edge of soil salinization and towards freshwater sources. The length, number, and circumference of roots were consistently higher in the upslope direction than downslope direction, suggesting an active morphological adaptation to sea‐level rise and salinity stress. Windthrown trees consistently fell in the upslope direction regardless of aspect and prevailing wind direction, suggesting that asymmetric rooting destabilized standing trees, and reduced their ability to withstand high winds. Together, these observations help explain curious observations of coastal forest resilience, and highlight an interesting nonadditive response to climate change, where adaptation to press stressors increases vulnerability to pulse stressors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10443847
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 10
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ghost forests, consisting of dead trees adjacent to marshes, are a striking feature of low-lying coastal and estuarine landscapes, and they represent the migration of coastal ecosystems with relative sea-level rise (RSLR). Although ghost forests have been observed along many coastal margins, rates of ecosystem change and their dependence on RSLR remain poorly constrained. Here, we reconstructed forest retreat rates using sediment coring and historical imagery at five sites along the Mid-Atlantic coast of the United States, a hotspot for accelerated RSLR. We found that the elevation of the marsh-forest boundary generally increased with RSLR over the past 2000 yr, and that retreat accelerated concurrently with the late 19th century acceleration in global sea level. Lateral retreat rates increased through time for most sampling intervals over the past 150 yr, and modern lateral retreat rates are 2 to 14 times faster than pre-industrial rates at all sites. Substantial deviations between RSLR and forest response are consistent with previous observations that episodic disturbance facilitates the mortality of adult trees. Nevertheless, our work suggests that RSLR is the primary determinant of coastal forest extent, and that ghost forests represent a direct and prominent visual indicator of climate change.more » « less
- 
            Coastal forests in the Mid-Atlantic region are threatened by sea level rise through chronic and episodic salinization and hydrologic alterations, leading to inland marsh migration and the occurrence of ghost forests. This study uses dendrochronology to explore the impact of rising sea level on the annual growth of Juniperus virginiana (the Eastern red cedar) at the St. Jones component of the Delaware National Estuarine Research Reserve in Dover, DE. Chronologies from low and high elevations were developed, and a difference chronology (high–low) was generated. A rapid field assessment of tree stress indicated greater stress in low elevation trees, and low elevation soil tests showed higher soil moisture and salt content compared to samples from high elevation. Ring width indices were analyzed in relation to water level, precipitation, the Standardized Precipitation Evapotranspiration Index, and temperature, with Pearson’s correlation analysis. Trees growing at low elevation showed greater climate sensitivity and responded favorably to cool, wet summers. Over time, correlations between growth and climate variables decreased, while negative correlations with tidal water level increased—a pattern that presented nearly a decade earlier in the low elevation system. Given the widespread distribution of the Eastern red cedar and its sensitivity to changes in sea level, this species may be particularly useful as a sentinel of change in coastal landscapes as sea levels rise.more » « less
- 
            ABSTRACT Sea level rise and storm surges affect coastal forests along low‐lying shorelines. Salinization and flooding kill trees and favour the encroachment of salt‐tolerant marsh vegetation. The hydrology of this ecological transition is complex and requires a multidisciplinary approach. Sea level rise (press) and storms (pulses) act on different timescales, affecting the forest vegetation in different ways. Salinization can occur either by vertical infiltration during flooding or from the aquifer driven by tides and sea level rise. Here, we detail the ecohydrological processes acting in the critical zone of retreating coastal forests. An increase in sea level has a three‐pronged effect on flooding and salinization: It raises the maximum elevation of storm surges, shifts the freshwater‐saltwater interface inland, and elevates the water table, leading to surface flooding from below. Trees can modify their root systems and local soil hydrology to better withstand salinization. Hydrological stress from intermittent storm surges inhibits tree growth, as evidenced by tree ring analysis. Tree rings also reveal a lag between the time when tree growth significantly slows and when the tree ultimately dies. Tree dieback reduces transpiration, retaining more water in the soil and creating conditions more favourable for flooding. Sedimentation from storm waters combined to organic matter decomposition can change the landscape, affecting flooding and runoff. Our results indicate that only a multidisciplinary approach can fully capture the ecohydrology of retreating forests in a period of accelerated sea level rise.more » « less
- 
            Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink. Sea-level-driven tidal wetland degradation and upland forest mortality threaten coastal carbon pools, but responses of the broader coastal landscape to interacting facets of climate change remain poorly understood. Here, we use 36 years of satellite observations across the mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the amount of carbon stored in the biomass of coastal ecosystems despite substantial areal loss. We find that sea-level-driven reductions in wetland and low-lying forest biomass were largely confined to areas less than 2 m above sea level, whereas the otherwise warmer and wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across the entire coastal landscape, climate-driven upland greening offset sea-level-driven biomass losses, such that the net impact of climate change was to increase the amount of carbon stored in coastal vegetation. These results point to a fundamental decoupling between upland and wetland carbon trends that can only be understood by integrating observations across traditional ecosystem boundaries. This holistic approach may provide a template for quantifying carbon–climate feedbacks and other aspects of coastal change that extend beyond sea-level rise alone.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
