skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mesoionic Carbene‐Catalyzed Formyl Alkylation of Aldehydes
Abstract Ketones are among the most useful functional groups in organic synthesis, and they are commonly encountered in a broad range of compounds with various applications. Herein, we describe the mesoionic carbene‐catalyzed coupling reaction of aldehydes with non‐activated secondary and even primary alkyl halides. This metal‐free method utilizes deprotonated Breslow intermediates derived from mesoionic carbenes (MICs), which act as super electron donors and induce the single‐electron reduction of alkyl halides. This mild coupling reaction has a broad substrate scope and tolerates many functional groups, which allows to prepare a diversity of simple ketones as well as bio‐active molecules by late‐stage functionalization.  more » « less
Award ID(s):
2153475
PAR ID:
10412378
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
24
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp 2 -hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp 2 -hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C–C bonds. 
    more » « less
  2. A general, highly selective method for decarbonylative thioetherification of aryl thioesters by C–S cleavage is reported. These reactions are promoted by a commercially-available, userfriendly, inexpensive, air- and moisture-stable nickel precatalyst. The process occurs with broad functional group tolerance, including free anilines, cyanides, ketones, halides and aryl esters, to efficiently generate thioethers using ubiquitous carboxylic acids as ultimate cross-coupling precursors (cf. conventional aryl halides or pseudohalides). Selectivity studies and site-selective orthogonal cross-coupling/thioetherification are described. This thioester activation/coupling has been highlighted in the expedient synthesis of biorelevant drug analogues. In light of the synthetic utility of thioethers and Ni(II) precatalysts, we anticipate that this user-friendly method will be of broad interest. 
    more » « less
  3. Base-controlled formation of Breslow intermediatesversusBreslow enolates has been achieved with mesoionic carbenes. Of particular interest is the coupling of aldehydes and alkyl halides to yield ketonesviaan ionic pathway. 
    more » « less
  4. Abstract The formation of aryl‐alkyl ether bonds through cross coupling of alcohols with aryl halides represents a useful strategic departure from classical SN2 methods. Numerous tactics relying on Pd‐, Cu‐, and Ni‐based catalytic systems have emerged over the past several years. Herein we disclose a Ni‐catalyzed electrochemically driven protocol to achieve this useful transformation with a broad substrate scope in an operationally simple way. This electrochemical method does not require strong base, exogenous expensive transition metal catalysts (e.g., Ir, Ru), and can easily be scaled up in either a batch or flow setting. Interestingly, e‐etherification exhibits an enhanced substrate scope over the mechanistically related photochemical variant as it tolerates tertiary amine functional groups in the alcohol nucleophile. 
    more » « less
  5. Abstract Aziridines are highly valued synthetic targets in organic and medicinal chemistry. The organocatalytic synthesis of such structures with broad substrate scope and good diastereoselectivity, however, is rare. Herein, we report a broadly applicable and diastereoselective synthetic method for the synthesis oftrans‐aziridines from imines and benzylic or alkyl halides utilizing sulfenate anions (PhSO) as the catalyst. Substrates bearing heterocyclic aromatic groups, alkyl, and electron‐rich and electron‐poor aryl groups were shown to be compatible with this method (33 examples), giving good yields and high diastereoselectivities (trans:cis>20 : 1). Further functionalization of aziridines containing cyclopropyl or cyclobutyl groups was achieved through ring‐opening reactions, with a cyclobutyl‐substituted norephedrine derivative obtained through a four‐step synthesis. We offer a mechanistic proposal involving reversible addition of the deprotonated benzyl sulfoxide to the imine to explain the hightrans‐diastereoselectivity. 
    more » « less