skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Folding and modulation of the helical conformation of Glycophorin A by point mutations
Transmembrane helix folding and self-association play important roles in biological signaling and transportation pathways across biomembranes. With molecular simulations, studies to explore the structural biochemistry of this process have been limited to focusing on individual fragments of this process – either helix formation or dimerization. While at an atomistic resolution, it can be prohibitive to access long spatio-temporal scales, at the coarse grained (CG) level, current methods either employ additional constraints to prevent spontaneous unfolding or have a low resolution on sidechain beads that restricts the study of dimer disruption caused by mutations. To address these research gaps, in this work, we apply our recent, in-house developed CG model ( ProMPT ) to study the folding and dimerization of Glycophorin A (GpA) and its mutants in the presence of Dodecyl-phosphocholine (DPC) micelles. Our results first validate the two-stage model that folding and dimerization are independent events for transmembrane helices and found a positive correlation between helix folding and DPC-peptide contacts. The wild type (WT) GpA is observed to be a right-handed dimer with specific GxxxG contacts, which agrees with experimental findings. Specific point mutations reveal several features responsible for the structural stability of GpA. While the T87L mutant forms anti-parallel dimers due to an absence of T87 interhelical hydrogen bonds, a slight loss in helicity and a hinge-like feature at the GxxxG region develops for the G79L mutant. We note that the local changes in the hydrophobic environment, affected by the point mutation, contribute to the development of this helical bend. This work presents a holistic overview of the structural stability of GpA in a micellar environment, while taking secondary structural fluctuations into account. Moreover, it presents opportunities for applications of computationally efficient CG models to study conformational alterations of transmembrane proteins that have physiological relevance.  more » « less
Award ID(s):
1760879
PAR ID:
10412418
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
15
ISSN:
1463-9076
Page Range / eLocation ID:
10885 to 10893
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR’s G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule–derived ΔΔGfor mutant L223A (−2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔGfor mutant V217A was 2.2-fold larger (−2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217and a natively bound squalene lipid, highlighting the contribution of membrane protein–lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔGfor a fully folded membrane protein embedded in its native bilayer. 
    more » « less
  2. The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt -shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signalinducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations. 
    more » « less
  3. null (Ed.)
    Abstract Asparagine-linked glycosylation, also known as N-linked glycosylation, is an essential and highly conserved co- and post-translational protein modification in eukaryotes and some prokaryotes. In the central step of this reaction, a carbohydrate moiety is transferred from a lipid-linked donor to the side-chain of a consensus asparagine in a nascent protein as it is synthesized at the ribosome. Complete loss of oligosaccharyltransferase (OST) function is lethal in eukaryotes. This reaction is carried out by a membrane-associated multisubunit enzyme, OST, localized in the endoplasmic reticulum. The smallest subunit, Ost4, contains a single membrane-spanning helix that is critical for maintaining the stability and activity of OST. Mutation of any residue from Met18 to Ile24 of Ost4 destabilizes the enzyme complex, affecting its activity. Here, we report solution nuclear magnetic resonance structures and molecular dynamics (MD) simulations of Ost4 and Ost4V23D in micelles. Our studies revealed that while the point mutation did not impact the structure of the protein, it affected its position and solvent exposure in the membrane mimetic environment. Furthermore, our MD simulations of the membrane-bound OST complex containing either WT or V23D mutant demonstrated disruption of most hydrophobic helix–helix interactions between Ost4V23D and transmembrane TM12 and TM13 of Stt3. This disengagement of Ost4V23D from the OST complex led to solvent exposure of the D23 residue in the hydrophobic pocket created by these interactions. Our study not only solves the structures of yeast Ost4 subunit and its mutant but also provides a basis for the destabilization of the OST complex and reduced OST activity. 
    more » « less
  4. Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations—whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico–chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties. 
    more » « less
  5. Abstract Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacteriumSinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl‐accepting chemotaxis proteins (MCPs).S. melilotipossesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand‐binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four‐helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri‐modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand‐free dimeric MCP‐LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane‐proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston‐type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand‐bound MCP‐LBDs. 
    more » « less