Although iron catalyzed cross-coupling reactions show extraordinary promise in reducing the environmental impact of more toxic and scarce transition metals, one of the main challenges is the use of reprotoxic NMP (NMP = N -methylpyrrolidone) as the key ligand to iron in the most successful protocols in this reactivity platform. Herein, we report that non-toxic and sustainable N -butylpyrrolidone (NBP) serves as a highly effective substitute for NMP in iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling of aryl chlorides with alkyl Grignard reagents. This challenging alkylation proceeds with organometallics bearing β-hydrogens with efficiency superseding or matching that of NMP with ample scope and broad functional group tolerance. Appealing applications are demonstrated in the cross-coupling in the presence of sensitive functional groups and the synthesis of several pharmaceutical intermediates, including a dual NK1/serotonin inhibitor, a fibrinolysis inhibitor and an antifungal agent. Considering that the iron/NMP system has emerged as one of the most powerful iron cross-coupling technologies available in both academic and industrial research, we anticipate that this method will be of broad interest.
more »
« less
Sequential Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides/Chemoselective Amide Reduction and Reductive Deuteration to Benzylic Alcohols
Benzylic alcohols are among the most important intermediates in organic synthesis. Recently, the use of abundant metals has attracted significant attention due to the issues with the scarcity of platinum group metals. Herein, we report a sequential method for the synthesis of benzylic alcohols by a merger of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides promoted by sodium dispersion in the presence of alcoholic donors. The method has been further extended to the synthesis of deuterated benzylic alcohols. The iron-catalyzed Kumada cross-coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)–C(sp3) cross-coupling with alkyl Grignard reagents that are prone to dimerization and β-hydride elimination. The subsequent sodium dispersion promoted reduction of carboxamides proceeds with full chemoselectivity for the C–N bond cleavage of the carbinolamine intermediate. The method provides access to valuable benzylic alcohols, including deuterium-labelled benzylic alcohols, which are widely used as synthetic intermediates and pharmacokinetic probes in organic synthesis and medicinal chemistry. The combination of two benign metals by complementary reaction mechanisms enables to exploit underexplored avenues for organic synthesis.
more »
« less
- Award ID(s):
- 1650766
- PAR ID:
- 10412451
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 28
- Issue:
- 1
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)–O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)–O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings.more » « less
-
Abstract Propargylic ethers serve as useful intermediates for the synthesis of a variety of complex targets. However, propargylic substitution of prefunctionalized alkyne starting materials remains the dominant method for the synthesis of propargyl ethers, while direct etherification of simple alkynes via propargylic C−H functionalization remains largely underreported. Herein, we report an organometallic umpolung approach for iron‐mediated C−H propargylic etherification. A telescopic protocol for iron‐mediated C−H deprotonation followed by mild oxidative coupling with alcohols enabled the use of simple or functionalized alkynes for the expedient synthesis of propargylic ethers with excellent functional group compatibility, chemoselectivity and regioselectivity.more » « less
-
Abstract The scarcity of precious metals has led to the development of sustainable strategies for metal‐catalyzed cross‐coupling reactions. The establishment of new catalytic methods using iron is attractive owing to the low cost, abundance, ready availability, and very low toxicity of iron. In the last few years, sustainable methods for iron‐catalyzed cross‐couplings have entered the critical area of pharmaceutical research. Most notably, iron is one of the very few metals that have been successfully field‐tested as highly effective base‐metal catalysts in practical, kilogram‐scale industrial cross‐couplings. In this Minireview, we critically discuss the strategic benefits of using iron catalysts as green and sustainable alternatives to precious metals in cross‐coupling applications for the synthesis of pharmaceuticals. The Minireview provides an essential introduction to the fundamental aspects of practical iron catalysis, highlights areas for improvement, and identifies new fields to be explored.more » « less
-
The iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling provides a highly economical route to exceedingly valuable alkylated arenes that are widespread in medicinal chemistry and materials science. Herein, we report an operationally-simple protocol for the selective C(sp 2 )–C(sp 3 ) iron-catalyzed cross-coupling of aryl chlorides with Grignard reagents at low catalyst loading. A broad range of electronically-varied aryl and heteroaryl chlorides underwent the cross-coupling using challenging alkyl organometallics possessing β-hydrogens with high efficiency up to 2000 TON. A notable feature of the protocol is the use of environmentally-friendly cyclic urea ligands. A series of guidelines to predict cross-coupling reactivity of aryl electrophiles is provided.more » « less
An official website of the United States government

