- PAR ID:
- 10412547
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cinnamylamines make-up many important drugs that target G protein-coupled receptors. While 3,3-diarylallylamines can be prepared via existing synthetic methods, these often require poorly-selective Wittig addition to unsymmetrical ketones, and multistep sequences thereafter to reach the allylamine product. Methods that make use of direct aryl addition to N -protected cinnamylamines via a Mizoroki–Heck pathway are known, however, unprotected cinnamylamines are sensitive to a mixture of C–H activation and Mizoroki–Heck arylation under Pd-catalysed arylation conditions using aryl iodides. This leads to a decrease in the trans / cis selectivity that can be achieved under these reaction conditions. By reimagining the reaction and using aryl boronic acids, we have herein demonstrated how in many cases the yield and E / Z selectivity can be improved. The in situ -formed active catalyst is more sensitive under these conditions, and was observed to shut down at elevated temperatures.more » « less
-
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring the electrical current through single molecules has received an increasing amount of attention and has witnessed tremendous advances in recent years. Research efforts in this direction have opened a new route for probing chemical and physical processes with single-molecule precision. This review presents detailed advancements in probing single-molecule chemical reactions using SMJ techniques. We specifically highlight recent progress in investigating electric-field-driven reactions, reaction dynamics and kinetics, host–guest interactions, and redox reactions of different molecular systems. Finally, we discuss the potential of single-molecule detection using SMJs across various future applications.more » « less
-
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
Abstract The Mizoroki–Heck reaction is one of the most efficient methods for alkenylation of aryl, vinyl, and alkyl halides. Given its innate nature, this protocol requires the employment of compounds possessing a halogen atom at the site of functionalization. However, the accessibility of organic molecules possessing a halogen atom at a particular site in aliphatic systems is extremely limited. Thus, a protocol that allows a Heck reaction to occur at a specific nonfunctionalized C(sp3)−H site is desirable. Reported here is a radical relay Heck reaction which allows selective remote alkenylation of aliphatic alcohols at unactivated β‐, γ‐, and δ‐C(sp3)−H sites. The use of an easily installed/removed Si‐based auxiliary enables selective I‐atom/radical translocation events at remote C−H sites followed by the Heck reaction. Notably, the reaction proceeds smoothly under mild visible‐light‐mediated conditions at room temperature, producing highly modifiable and valuable alkenol products from readily available alcohols feedstocks.
-
The Heck reaction is one of the most reliable and useful strategies for the construction of C–C bonds in organic synthesis. However, in contrast to the well-established aryl Heck reaction, the analogous reaction employing alkyl electrophiles is much less developed. Significant progress in this area was recently achieved by merging radical-mediated and transition-metal-catalyzed approaches. This review summarizes the advances in alkyl Heck-type reactions from its discovery early in the 1970s up until the end of 2018. 1 Introduction 2 Pd-Catalyzed Heck-Type Reactions 2.1 Benzylic Electrophiles 2.2 α-Carbonyl Alkyl Halides 2.3 Fluoroalkyl Halides 2.4 α-Functionalized Alkyl Halides 2.5 Unactivated Alkyl Electrophiles 3 Ni-Catalyzed Heck-Type Reactions 3.1 Benzylic Electrophiles 3.2 α-Carbonyl Alkyl Halides 3.3 Unactivated Alkyl Halides 4 Co-Catalyzed Heck-Type Reactions 5 Cu-Catalyzed Heck-Type Reactions 6 Other Metals in Heck-Type Reactions 7 Conclusionmore » « less