Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring the electrical current through single molecules has received an increasing amount of attention and has witnessed tremendous advances in recent years. Research efforts in this direction have opened a new route for probing chemical and physical processes with single-molecule precision. This review presents detailed advancements in probing single-molecule chemical reactions using SMJ techniques. We specifically highlight recent progress in investigating electric-field-driven reactions, reaction dynamics and kinetics, host–guest interactions, and redox reactions of different molecular systems. Finally, we discuss the potential of single-molecule detection using SMJs across various future applications. 
                        more » 
                        « less   
                    
                            
                            Precise electrical gating of the single-molecule Mizoroki-Heck reaction
                        
                    
    
            Abstract Precise tuning of chemical reactions with predictable and controllable manners, an ultimate goal chemists desire to achieve, is valuable in the scientific community. This tunability is necessary to understand and regulate chemical transformations at both macroscopic and single-molecule levels to meet demands in potential application scenarios. Herein, we realise accurate tuning of a single-molecule Mizoroki-Heck reaction via applying gate voltages as well as complete deciphering of its detailed intrinsic mechanism by employing an in-situ electrical single-molecule detection, which possesses the capability of single-event tracking. The Mizoroki-Heck reaction can be regulated in different dimensions with a constant catalyst molecule, including the molecular orbital gating of Pd(0) catalyst, the on/off switching of the Mizoroki-Heck reaction, the promotion of its turnover frequency, and the regulation of each elementary reaction within the Mizoroki-Heck catalytic cycle. These results extend the tuning scope of chemical reactions from the macroscopic view to the single-molecule approach, inspiring new insights into designing different strategies or devices to unveil reaction mechanisms and discover novel phenomena. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10412547
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Heck reaction is one of the most reliable and useful strategies for the construction of C–C bonds in organic synthesis. However, in contrast to the well-established aryl Heck reaction, the analogous reaction employing alkyl electrophiles is much less developed. Significant progress in this area was recently achieved by merging radical-mediated and transition-metal-catalyzed approaches. This review summarizes the advances in alkyl Heck-type reactions from its discovery early in the 1970s up until the end of 2018. 1 Introduction 2 Pd-Catalyzed Heck-Type Reactions 2.1 Benzylic Electrophiles 2.2 α-Carbonyl Alkyl Halides 2.3 Fluoroalkyl Halides 2.4 α-Functionalized Alkyl Halides 2.5 Unactivated Alkyl Electrophiles 3 Ni-Catalyzed Heck-Type Reactions 3.1 Benzylic Electrophiles 3.2 α-Carbonyl Alkyl Halides 3.3 Unactivated Alkyl Halides 4 Co-Catalyzed Heck-Type Reactions 5 Cu-Catalyzed Heck-Type Reactions 6 Other Metals in Heck-Type Reactions 7 Conclusionmore » « less
- 
            The synthesis of a new Nile red derivative incorporating a reactive aldehyde moiety (NR-CHO) is reported and its use in spectroscopic studies of heterogeneous catalyst activity in crossed aldol reactions is demonstrated. 1 H and 13 C NMR, and high-resolution mass spectrometry confirmed the desired NR-CHO was obtained. Mg-Zr-Cs doped silica (Cs(Zr,Mg)-SiO 2 ) was employed as the catalyst and its performance was compared to that of commercially available MgO. Fumed silica was used as a control. Aldol reactions with acetone and acetophenone were run in 4 : 1 (v/v) DMSO : ketone solutions in the presence of both dilute (1 μM) and concentrated (1 mM) NR-CHO. NR-CHO fluorescence spectra were acquired as the reactions progressed. Shifts in its emission spectrum are used to distinguish the products formed and to characterize the reaction rate. The dye exhibits different behavior that defines whether the reaction stops at the addition (alcohol) product, or forms both addition and condensation (olefin) products, providing valuable initial information on catalyst activity. The assignment of addition and condensation products is supported by thin layer chromatography, high performance liquid chromatography (HPLC), and HPLC-mass spectrometry data. Product formation is shown to depend upon the catalyst employed, with the Cs(Zr,Mg)-SiO 2 yielding both addition and condensation products, while MgO yields primarily addition products. The advantages of NR-CHO in spectroscopic studies of aldol reactions are also demonstrated relative to commercially available 3-perylenecarboxaldehyde. The NR-CHO reported here and the results obtained will facilitate a broad range of both ensemble and single molecule spectroscopic investigations of heterogeneous catalysis in crossed aldol reactions in the future.more » « less
- 
            In this work, we investigated the catalytic effects of a Sharpless dimeric titanium (IV)–tartrate–diester catalyst on the epoxidation of allylalcohol with methyl–hydroperoxide considering four different orientations of the reacting species coordinated at the titanium atom (reactions R1–R4) as well as a model for the non-catalyzed reaction (reaction R0). As major analysis tools, we applied the URVA (Unified Reaction Valley Approach) and LMA (Local Mode Analysis), both being based on vibrational spectroscopy and complemented by a QTAIM analysis of the electron density calculated at the DFT level of theory. The energetics of each reaction were recalculated at the DLPNO-CCSD(T) level of theory. The URVA curvature profiles identified the important chemical events of all five reactions as peroxide OO bond cleavage taking place before the TS (i.e., accounting for the energy barrier) and epoxide CO bond formation together with rehybridization of the carbon atoms of the targeted CC double bond after the TS. The energy decomposition into reaction phase contribution phases showed that the major effect of the catalyst is the weakening of the OO bond to be broken and replacement of OH bond breakage in the non-catalyzed reaction by an energetically more favorable TiO bond breakage. LMA performed at all stationary points rounded up the investigation (i) quantifying OO bond weakening of the oxidizing peroxide upon coordination at the metal atom, (ii) showing that a more synchronous formation of the new CO epoxide bonds correlates with smaller bond strength differences between these bonds, and (iii) elucidating the different roles of the three TiO bonds formed between catalyst and reactants and their interplay as orchestrated by the Sharpless catalyst. We hope that this article will inspire the computational community to use URVA complemented with LMA in the future as an efficient mechanistic tool for the optimization and fine-tuning of current Sharpless catalysts and for the design new of catalysts for epoxidation reactions.more » « less
- 
            Abstract Chemical reactions conducted in the solid phase (specifically, crystalline) are much less numerous than solution reactions, primarily due to reduced motion, flexibility, and reactivity. The main advantage of crystalline‐state transformations is that reactant molecules can be designed to self‐assemble into specific spatial arrangements, often leading to high control over product regiochemistry and/or stereochemistry. In crystalline‐phase transformations, typically only one type of reaction occurs, and a sacrificial template molecule is frequently used to facilitate self‐assembly, similar to a catalyst or enzyme. Here, we demonstrate the first system designed to undergo two chemically unique and orthogonal cycloaddition reactions simultaneously within a single crystalline solid. Well‐controlled supramolecular self‐assembly of two molecules containing different reactive moieties affords orthogonal reactivity without use of a sacrificial template. Using only UV light, the simultaneous [2+2] and [4+4] cycloadditions are achieved regiospecifically, stereospecifically, and products are obtained in high yield, whereas a simultaneous solution‐state reaction affords a mixture of isomers in low yield. Application of dually‐reactive systems toward (supra)molecular solar thermal storage materials is also discussed. This work demonstrates fundamental chemical approaches for orthogonal reactivity in the crystalline state and highlights the complexity and reversibility that can be achieved with supramolecular design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    