skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery of a Thioxanthone–TfOH Complex as a Photoredox Catalyst for Hydrogenation of Alkenes Using p ‐Xylene as both Electron and Hydrogen Sources
Award ID(s):
1764328 2153972
PAR ID:
10412558
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
48
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Ranunculales are a hyperdiverse lineage in many aspects of their phenotype, including growth habit, floral and leaf morphology, reproductive mode, and specialized metabolism. Many Ranunculales species, such as opium poppy and goldenseal, have a high medicinal value. In addition, the order includes a large number of commercially important ornamental plants, such as columbines and larkspurs. The phylogenetic position of the order with respect to monocots and core eudicots and the diversity within this lineage make the Ranunculales an excellent group for studying evolutionary processes by comparative studies. Lately, the phylogeny of Ranunculales was revised, and genetic and genomic resources were developed for many species, allowing comparative analyses at the molecular scale. Here, we review the literature on the resources for genetic manipulation and genome sequencing, the recent phylogeny reconstruction of this order, and its fossil record. Further, we explain their habitat range and delve into the diversity in their floral morphology, focusing on perianth organ identity, floral symmetry, occurrences of spurs and nectaries, sexual and pollination systems, and fruit and dehiscence types. The Ranunculales order offers a wealth of opportunities for scientific exploration across various disciplines and scales, to gain novel insights into plant biology for researchers and plant enthusiasts alike. 
    more » « less
  2. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT Crocosphaera watsonii (hereafter referred to as Crocosphaera) is a key nitrogen (N) fixer in the ocean, but its ability to consume combined-N sources is still unclear. Using in situ microcosm incubations with an ecological model, we show that Crocosphaera has high competitive capability both under low and moderately high combined-N concentrations. In field incubations, Crocosphaera accounted for the highest consumption of ammonium and nitrate, followed by picoeukaryotes. The model analysis shows that cells have a high ammonium uptake rate (~7 mol N [mol N]^−1 d^−1 at the maximum), which allows them to compete against picoeukaryotes and nondiazotrophic cyanobacteria when combined N is sufficiently available. Even when combined N is depleted, their capability of nitrogen fixation allows higher growth rates compared to potential competitors. These results suggest the high fitness of Crocosphaera in combined-N limiting, oligotrophic oceans heightening its potential significance in its ecosystem and in biogeochemical cycling. 
    more » « less
  3. null (Ed.)
  4. Humphries, Romney M (Ed.)
    ABSTRACT Human infections with the protozoanLophomonashave been increasingly reported in the medical literature over the past three decades. Initial reports were based on microscopic identification of the purported pathogen in respiratory specimens. Later, a polymerase chain reaction (PCR) was developed to detectLophomonas blattarum, following which there has been a significant increase in reports. In this minireview, we thoroughly examine the published reports ofLophomonasinfection to evaluate its potential role as a human pathogen. We examined the published images and videos of purportedLophomonas,compared its morphology and motility characteristics with host bronchial ciliated epithelial cells and trueL. blattarumderived from cockroaches, analyzed the published PCR that is being used for its diagnosis, and reviewed the clinical data of patients reported in the English and Chinese literature. From our analysis, we conclude that the images and videos from human specimens do not represent trueLophomonasand are predominantly misidentified ciliated epithelial cells. Additionally, we note that there is insufficient clinical evidence to attribute the cases toLophomonasinfection, as the clinical manifestations are non-specific, possibly caused by other infections and comorbidities, and there is no associated tissue pathology attributable toLophomonas. Finally, our analysis reveals that the published PCR is not specific toLophomonasand can amplify DNA from commensal trichomonads. Based on this thorough review, we emphasize the need for rigorous scientific scrutiny before a microorganism is acknowledged as a novel human pathogen and discuss the potential harms of misdiagnoses for patient care and scientific literature. 
    more » « less
  5. Optical upconversion (UC) of low energy photons into high energy photons enables solar cells to harvest photons with energies below the band gap of the absorber, reducing the transmission loss. UC based on triplet–triplet annihilation (TTA) in organic chromophores can upconvert photons from sunlight, albeit with low conversion efficiency. We utilize three energy-based criteria to assess the UC potential of TTA emitters in terms of the quantum yield (QY) and the anti-Stokes shift. The energy loss in the singlet pathway of an emitter encounter complex, where a high energy photon is emitted, determines whether a chromophore may undergo TTA. The energy loss in the triplet pathway, which is the main competing process, impacts the TTA QY. The energy difference between the lowest singlet and triplet excitation states in TTA emitters sets an upper bound for the anti-Stokes shift of TTA-UC. Using the energetic criteria evaluated by time-dependent density functional theory (TDDFT) calculations, we find that benzo[ a ]tetracene, benzo[ a ]pyrene, and their derivatives are promising TTA emitters. The energetics assessment and computer simulations could be used to efficiently discover and design more candidate high-performance TTA emitters. 
    more » « less