skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From dawn till disc: Milky Way’s turbulent youth revealed by the APOGEE+ Gaia data
ABSTRACT We use accurate estimates of aluminium abundance from the APOGEE Data Release 17 and Gaia Early Data Release 3 astrometry to select a highly pure sample of stars with metallicity −1.5 ≲ [Fe/H] ≲ 0.5 born in-situ in the Milky Way proper. The low-metallicity ([Fe/H]  ≲ −1.3) in-situ component we dub Aurora is kinematically hot with an approximately isotropic velocity ellipsoid and a modest net rotation. Aurora stars exhibit large scatter in metallicity and in many element abundance ratios. The median tangential velocity of the in-situ stars increases sharply with metallicity between [Fe/H] = −1.3 and −0.9, the transition that we call the spin-up. The observed and theoretically expected age–metallicity correlations imply that this increase reflects a rapid formation of the MW disc over ≈1–2 Gyr. The transformation of the stellar kinematics as a function of [Fe/H] is accompanied by a qualitative change in chemical abundances: the scatter drops sharply once the Galaxy builds up a disc during later epochs corresponding to [Fe/H] > −0.9. Results of galaxy formation models presented in this and other recent studies strongly indicate that the trends observed in the MW reflect generic processes during the early evolution of progenitors of MW-sized galaxies: a period of chaotic pre-disc evolution, when gas is accreted along cold narrow filaments and when stars are born in irregular configurations, and subsequent rapid disc formation. The latter signals formation of a stable hot gaseous halo around the MW progenitor, which changes the mode of gas accretion and allows development of coherently rotating disc.  more » « less
Award ID(s):
1911111
PAR ID:
10412781
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 689-714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Anomalously high nitrogen-to-oxygen abundance ratios [N/O] are observed in globular clusters (GCs), among the field stars of the Milky Way (MW), and even in the gas in a z ≈ 11 galaxy. Using data from the APOGEE Data Release 17 and the Gaia Data Release 3, we present several independent lines of evidence that most of the MW’s high-[N/O] stars were born in situ in massive bound clusters during the early, pre-disc evolution of the Galaxy. Specifically, we show that distributions of metallicity [Fe/H], energy, the angular momentum Lz, and distance of the low-metallicity high-[N/O] stars match the corresponding distributions of stars of the Aurora population and of the in situ GCs. We also show that the fraction of in situ field high-[N/O] stars, fN/O, increases rapidly with decreasing metallicity. During epochs when metallicity evolves from $$\rm [Fe/H]=-1.5$$ to $$\rm [Fe/H]=-0.9$$, the Galaxy spins up and transitions from a turbulent Aurora state to a coherently rotating disc. This transformation is accompanied by many qualitative changes. In particular, we show that high N/O abundances similar to those observed in GN-z11 were common before the spin-up ($$\rm [Fe/H]\lesssim -1.5$$) when up to $$\approx 50~{{\ \rm per\ cent}}-70~{{\ \rm per\ cent}}$$ of the in situ stars formed in massive bound clusters. The dramatic drop of fN/O at $$\rm [Fe/H]\gtrsim -0.9$$ indicates that after the disc emerges the fraction of stars forming in massive bound clusters decreases by two orders of magnitude. 
    more » « less
  2. NA (Ed.)
    ABSTRACT We present a new scheme for the classification of the in-situ and accreted globular clusters (GCs). The scheme uses total energy E and z-component of the orbital angular momentum and is calibrated using the [Al/Fe] abundance ratio. We demonstrate that this classification results in two GC populations with distinct spatial, kinematic, and chemical abundance distributions. The in-situ GCs are distributed within the central 10 kpc of the Galaxy in a flattened configuration aligned with the Milky Way (MW) disc, while the accreted GCs have a wide distribution of distances and a spatial distribution close to spherical. In-situ and accreted GCs have different $$\rm [Fe/H]$$ distributions with the well-known bimodality present only in the metallicity distribution of the in-situ GCs. Furthermore, the accreted and in-situ GCs are well separated in the plane of $$\rm [Al/Fe]-[Mg/Fe]$$ abundance ratios and follow distinct sequences in the age–$$\rm [Fe/H]$$ plane. The in-situ GCs in our classification show a clear disc spin-up signature – the increase of median Vϕ at metallicities −1.3 < [Fe/H] < −1 similar to the spin-up in the in-situ field stars. This signature signals the MW’s disc formation, which occurred ≈11.7−12.7 Gyr ago (or at z ≈ 3.1−5.3) according to in-situ GC ages. In-situ GCs with metallicities of $$\rm [Fe/H]\gtrsim -1.3$$ were thus born in the MW disc, while lower metallicity in-situ GCs were born during early, turbulent, pre-disc stages of the evolution of the Galaxy and are part of its Aurora stellar component. 
    more » « less
  3. ABSTRACT We characterize the 3D spatial variations of [Fe/H], [Mg/H], and [Mg/Fe] in stars at the time of their formation, across 11 simulated Milky Way (MW)- and M31-mass galaxies in the FIRE-2 simulations, to inform initial conditions for chemical tagging. The overall scatter in [Fe/H] within a galaxy decreased with time until $$\approx 7 \, \rm {Gyr}$$ ago, after which it increased to today: this arises from a competition between a reduction of azimuthal scatter and a steepening of the radial gradient in abundance over time. The radial gradient is generally negative, and it steepened over time from an initially flat gradient $$\gtrsim 12 \, \rm {Gyr}$$ ago. The strength of the present-day abundance gradient does not correlate with when the disc ‘settled’; instead, it best correlates with the radial velocity dispersion within the galaxy. The strength of azimuthal variation is nearly independent of radius, and the 360 deg scatter decreased over time, from $$\lesssim 0.17 \, \rm {dex}$$ at $$t_{\rm lb} = 11.6 \, \rm {Gyr}$$ to $$\sim 0.04 \, \rm {dex}$$ at present-day. Consequently, stars at $$t_{\rm lb} \gtrsim 8 \, \rm {Gyr}$$ formed in a disc with primarily azimuthal scatter in abundances. All stars formed in a vertically homogeneous disc, Δ[Fe/H]$$\le 0.02 \, \rm {dex}$$ within $$1 \, \rm {kpc}$$ of the galactic mid-plane, with the exception of the young stars in the inner $$\approx 4 \, \rm {kpc}$$ at z ∼ 0. These results generally agree with our previous analysis of gas-phase elemental abundances, which reinforces the importance of cosmological disc evolution and azimuthal scatter in the context of stellar chemical tagging. We provide analytic fits to our results for use in chemical-tagging analyses. 
    more » « less
  4. null (Ed.)
    ABSTRACT In hierarchical structure formation, metal-poor stars in and around the Milky Way (MW) originate primarily from mergers of lower mass galaxies. A common expectation is therefore that metal-poor stars should have isotropic, dispersion-dominated orbits that do not correlate strongly with the MW disc. However, recent observations of stars in the MW show that metal-poor ($$\rm {[Fe/H]}\lesssim -2$$) stars are preferentially on prograde orbits with respect to the disc. Using the Feedback In Realistic Environments 2 (FIRE-2) suite of cosmological zoom-in simulations of MW/M31-mass galaxies, we investigate the prevalence and origin of prograde metal-poor stars. Almost all (11 of 12) of our simulations have metal-poor stars on preferentially prograde orbits today and throughout most of their history: we thus predict that this is a generic feature of MW/M31-mass galaxies. The typical prograde-to-retrograde ratio is ∼2:1, which depends weakly on stellar metallicity at $$\rm {[Fe/H]}\lesssim -1$$. These trends predicted by our simulations agree well with MW observations. Prograde metal-poor stars originate largely from a single Large/Small Magellanic Cloud (LMC/SMC)-mass gas-rich merger $$7\!-\!12.5\, \rm {Gyr}$$ ago, which deposited existing metal-poor stars and significant gas on an orbital vector that sparked the formation of and/or shaped the orientation of a long-lived stellar disc, giving rise to a prograde bias for all low-metallicity stars. We find subdominant contributions from in situ stars formed in the host galaxy before this merger, and in some cases, additional massive mergers. We find few clear correlations between any properties of our MW/M31-mass galaxies at z = 0 and the degree of this prograde bias as a result of diverse merger scenarios. 
    more » « less
  5. Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ. 
    more » « less