Abstract. Nutrient budgets help to identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow for the calculation of indicators, such as the nutrient balance (surplus if positive or deficit if negative) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability across the world. We present a global database of country-level budget estimates for nitrogen (N), phosphorus (P) and potassium (K) on cropland. The database, disseminated in FAOSTAT, is meant to provide a global reference, synthesizing and continuously updating the state of the art on this topic. The database covers 205 countries and territories, as well as regional and global aggregates, for the period from 1961 to 2020. Results highlight the wide range in nutrient use and nutrient use efficiencies across geographic regions, nutrients, and time. The average N balance on global cropland has remained fairly steady at about 50–55 kg ha−1 yr−1 during the past 15 years, despite increasing N inputs. Regional trends, however, show recent average N surpluses that range from a low of about 10 kg N ha−1 yr−1 in Africa to more than 90 kg N ha−1 yr−1 in Asia. Encouragingly, average global cropland N use efficiency decreased from about 59 % in 1961 to a low of 43 % in 1988, but it has risen since then to a level of 55 %. Phosphorus deficits are mainly found in Africa, whereas potassium deficits occur in Africa and the Americas. This study introduces improvements over previous work in relation to the key nutrient coefficients affecting nutrient budgets and nutrient use efficiency estimates, especially with respect to nutrient removal in crop products, manure nutrient content, atmospheric deposition and crop biological N fixation rates. We conclude by discussing future research directions and highlighting the need to align statistical definitions across research groups as well as to further refine plant and livestock coefficients and expand estimates to all agricultural land, including nutrient flows in meadows and pastures. Further information is available from https://doi.org/10.5061/dryad.hx3ffbgkh (Ludemann et al., 2023b) as well as the FAOSTAT database (https://www.fao.org/faostat/en/#data/ESB; FAO, 2022a) and is updated annually.
more »
« less
Changing cropland in changing climates: quantifying two decades of global cropland changes
Abstract Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis.
more »
« less
- PAR ID:
- 10412807
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 18
- Issue:
- 6
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 064010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ahmed, Ferdous (Ed.)This study examines the lived experiences and adaptation strategies of small-scale farmers in the southwestern Brazilian Amazonian state of Rondônia, amidst escalating climate challenges. Through nine in-depth interviews, it uncovers the impact of unpredictable weather, increased temperatures, and shifting precipitation on agriculture and livelihoods. Participants, ranging from family farmers to agricultural collective members, detail shifts from traditional crop cultivation to more resilient practices like cattle ranching and dairy production. The narratives reveal a deep understanding of local climate volatility and its direct effects on water availability, crop viability, and livestock productivity. Farmers describe adaptation measures including new crop varieties, irrigation systems, and strategic land use to enhance biodiversity and mitigate climate change effects. Despite these adaptations, challenges like water scarcity, high input costs, and the need for technical assistance remain prominent. Farmers emphasize the need for stronger support systems, highlighting community solidarity, governmental aid, and access to sustainable technologies and education as essential for climate adaptation. They call for policies providing equitable resources and support, underscoring the importance of inclusive climate governance that acknowledges the unique vulnerabilities and contributions of Rondônia’s agricultural sector. This research contributes to understanding how climate change reshapes rural Amazonian communities, arguing that ongoing deforestation and climatic changes threaten regional agricultural stability. It advocates for targeted policy interventions to provide technical assistance for sustainable farming and climate adaptation, alongside mechanisms to support fair market pricing. These measures are essential for enhancing the resilience and sustainability of local farming communities amidst climate change.more » « less
-
Abstract The Latin America and the Caribbean (LAC) region plays key roles in both meeting global agricultural demands and maintaining carbon sinks due to its abundant land and water resources. In this study we use the Global Change Analysis Model to evaluate the opportunities and challenges posed by two global‐scale drivers: agricultural market integration (i.e., reduction of trade barriers) and land‐based climate mitigation policy. We evaluate their potential individual and combined impacts on agricultural production and trade revenues across LAC's economies through mid‐century, as well as the resulting impacts on agricultural consumers and integrated land‐water‐climate systems across LAC's diverse sub‐regions. Increased global market integration results in increased agricultural production and trade revenues for many LAC economies, driven by their evolving comparative advantages. Climate mitigation measures on CO2and non‐CO2greenhouse gases increase revenues due to increased agricultural prices from land competition and emissions abatement. The combined outcomes from both drivers are complex and sometimes non‐linear, highlighting the importance of understanding the interactions between multiple drivers. Our results show that increased agricultural production and trade opportunities, from either of the two drivers, pose significant trade‐offs that require careful multi‐sectoral planning, such as emissions reduction challenges, potential loss of livestock production when pursuing land‐based climate mitigation strategies, increased consumer expenditures, and changes in land‐use or water withdrawals, resulting in deforestation or water scarcity pressures. There is considerable heterogeneity in economic and environmental outcomes across LAC sub‐regions and agricultural commodities, illustrating the value of considering outcomes at finer scales.more » « less
-
Abstract This study seeks to understand how Argentina's energy, water, and land (EWL) systems will co‐evolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub‐national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder‐engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid‐century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km2of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net‐zero carbon emissions globally shortly after mid‐century projects that Argentina could use 100,000 km2of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experience moderate‐to‐severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate‐induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi‐scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human‐earth systems.more » « less
-
Climate anomalies and changes have complex and critical impacts on agriculture. Given global warming, the scientific community has dramatically increased research on these impacts. During 1996–2022, over 3,000 peer-reviewed papers in the Web of Science Core Collection database have investigated the fields. This study conducted a bibliometric analysis of these papers for systematic mapping and inductive understanding to comprehensively review the research’s status, focus, network, and funding. After almost 30 years, the research is now centered in quantifying climate impacts on crop yields and agriculture productivity while seeking effective adaptation solutions. The hot keywords recently emerged include poverty, food security, water resource, climate service, climate-smart agriculture, sustainability, and policy. They suggest increasing concerns on global food and water shortage and pressing needs for action to adapt to climate change and sustain agricultural productivity. Given the uncertainty of climate change and the complexity of agriculture systems, most current studies are interdisciplinary research combining various agricultural fields with climate, environmental, and socioeconomic sciences. The United States, as the world’s leading food commodity producer, has the most diverse funding agencies and provides the largest number of awards to support the research. Future priority research should take the coupled earth system approach with the food-energy-water nexus principles to provide effective, actionable decision supports at local-regional scales to sustain national agricultural productivity and quantify climate-smart agricultural practices to mitigate global warming.more » « less
An official website of the United States government
