Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic
We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,
- PAR ID:
- 10412824
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 95
- Size(s):
- Article No. 95
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment toD and the effective electrong -factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules. -
Abstract The stellar initial mass function (IMF) is a fundamental property in the measurement of stellar masses and galaxy star formation histories. In this work, we focus on the most massive galaxies in the nearby universe
. We obtain high-quality Magellan/LDSS-3 long-slit spectroscopy with a wide wavelength coverage of 0.4–1.01μ m for 41 early-type galaxies (ETGs) in the MASSIVE survey and derive high signal-to-noise spectra within an aperture ofR e/8. Using detailed stellar synthesis models, we constrain the elemental abundances and stellar IMF of each galaxy through full spectral modeling. All the ETGs in our sample have an IMF that is steeper than a Milky Way (Kroupa) IMF. The best-fit IMF mismatch parameter,α IMF= (M /L )/(M /L )MW, ranges from 1.1 to 3.1, with an average of 〈α IMF〉 = 1.84, suggesting that on average, the IMF is more bottom heavy than Salpeter. Comparing the estimated stellar masses with the dynamical masses, we find that most galaxies have stellar masses that are smaller than their dynamical masses within the 1σ uncertainty. We complement our sample with lower-mass galaxies from the literature and confirm that is positively correlated with , , and . From the combined sample, we show that the IMF in the centers of more massive ETGs is more bottom heavy. In addition, we find that is positively correlated with both [Mg/Fe] and the estimated total metallicity [Z/H]. We find suggestive evidence that the effective stellar surface density ΣKroupamight be responsible for the variation ofα IMF. We conclude thatσ , [Mg/Fe], and [Z/H] are the primary drivers of the global stellar IMF variation. -
Abstract We present13CO(
J = 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF 60/F 100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r 25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r 25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r 25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations. -
Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution function
f 0(r ,p ) at cylindrical radiusr from the jet axis (assumed to lie along thez -axis) is given by convolving the particle momentum spectrum with the Green’s function , which describes the monoenergetic spectrum solution in which asr → ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for . The flow velocity =u u (r )e z is along the axis of the jet (thez -axis). is independent ofu z , andu (r ) is a monotonic decreasing function ofr . The scattering time in the shear flow region 0 <r <r 2, and , wheres > 0 in the regionr >r 2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r ,p ) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at (r ,p ) originated fromr → ∞ with momentum . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. -
Abstract We study
ℓ ∞norms ofℓ 2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics ,211 , 659–686)) we show that there exists a sequence of eigenfunctionsu with . For general eigenfunctions we show the upper bound . Here the semiclassical parameter is . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift ,155 , 249-276) for compact Riemannian manifolds without conjugate points.