We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲
We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,
- NSF-PAR ID:
- 10412824
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- Article No. 95
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≲ 2.6 (z mean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of and a median star formation rate of . We measure the faint electron-temperature-sensitive [Oiii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of ( ). We investigate the applicability at highz of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM *, our composite is well represented by thez ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixedM *and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ) when considering the bootstrapped (statistical-only) error spectrum. This result suggests that lower-mass galaxies have lower densities than higher-mass galaxies atz ∼ 2. -
Abstract We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the D
is Per SE framework. We measure the comoving distance from each galaxy with stellar mass to the nearest node (d node) and the nearest filament spine (d fil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈f gas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz < 2, with the dependence increasing with time. Atz ≤ 0.5, galaxies are quenched atd node≲ 1 Mpc, and have significantly suppressed star formation atd fil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz ≤ 1, in contrast to the monotonic drop in 〈sSFR〉 of galaxies with decreasingd nodeandd fil, galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atd node≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈f gas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations. -
Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Ly
α absorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <z abs< 3.5, such that the secondary sightline probes absorption from Lyα and a large suite of metal-line transitions (including Oi , Cii , Civ , Siii , and Siiv ) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R ⊥≤ 284 kpc. Analysis of Lyα in the CGM sightlines shows an anticorrelation betweenR ⊥and Hi column density (N HI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Cii and Siii withN > 1013cm−2within 100 kpc of DLAs are larger by 2σ than those measured in the CGM of Lyman break galaxies (Cf (N CII ) > 0.89 and ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andN HI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civ λ 1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ ) correlated, suggesting that they trace the potential well of the host halo overR ⊥≲ 300 kpc scales. At the same time, velocity centroids for Civ λ 1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M ⊙. -
Abstract We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1
σ (LRG), 5.7σ (ELG), and 11.1σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi ), defined as , where ΩHi is the cosmic abundance of Hi ,b Hi is the linear bias of Hi , and 〈f μ 2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find for LRGs (z = 0.84), for ELGs (z = 0.96), and for QSOs (z = 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv = − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz = 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far. -
Abstract We performed a rigorous reverberation-mapping analysis of the broad-line region (BLR) in a highly accreting (
L /L Edd= 0.74–3.4) active galactic nucleus, Markarian 142 (Mrk 142), for the first time using concurrent observations of the inner accretion disk and the BLR to determine a time lag for the Hβ λ 4861 emission relative to the ultraviolet (UV) continuum variations. We used continuum data taken with the Niel Gehrels Swift Observatory in theUVW 2 band, and the Las Cumbres Observatory, Dan Zowada Memorial Observatory, and Liverpool Telescope in theg band, as part of the broader Mrk 142 multiwavelength monitoring campaign in 2019. We obtained new spectroscopic observations covering the Hβ broad emission line in the optical from the Gemini North Telescope and the Lijiang 2.4 m Telescope for a total of 102 epochs (over a period of 8 months) contemporaneous to the continuum data. Our primary result states a UV-to-Hβ time lag of days in Mrk 142 obtained from light-curve analysis with a Python-based running optimal average algorithm. We placed our new measurements for Mrk 142 on the optical and UV radius–luminosity relations for NGC 5548 to understand the nature of the continuum driver. The positions of Mrk 142 on the scaling relations suggest that UV is closer to the “true” driving continuum than the optical. Furthermore, we obtain = 6.32 ± 0.29 assuming UV as the primary driving continuum.