skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Psychometric Framework for Evaluating Fairness in Algorithmic Decision Making: Differential Algorithmic Functioning
As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to propose a new framework for algorithmic fairness based on differential item functioning (DIF), which has been commonly used to measure item fairness in psychometrics. Our fairness notion, which we call differential algorithmic functioning (DAF), is defined based on three pieces of information: a decision variable, a “fair” variable, and a protected variable such as race or gender. Under the DAF framework, an algorithm can exhibit uniform DAF, nonuniform DAF, or neither (i.e., non-DAF). For detecting DAF, we provide modifications of well-established DIF methods: Mantel–Haenszel test, logistic regression, and residual-based DIF. We demonstrate our framework through a real dataset concerning decision-making algorithms for grade retention in K–12 education in the United States.  more » « less
Award ID(s):
2225321
PAR ID:
10412872
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.3102
Date Published:
Journal Name:
Journal of Educational and Behavioral Statistics
Volume:
49
Issue:
2
ISSN:
1076-9986
Format(s):
Medium: X Size: p. 151-172
Size(s):
p. 151-172
Sponsoring Org:
National Science Foundation
More Like this
  1. Ensuring fairness is crucial in developing modern algorithms and tests. To address potential biases and discrimination in algorithmic decision making, researchers have drawn insights from the test fairness literature, notably the work on differential algorithmic functioning (DAF) by Suk and Han. Nevertheless, the exploration of intersectionality in fairness investigations, within both test fairness and algorithmic fairness fields, is still relatively new. In this paper, we propose an extension of the DAF framework to include the concept of intersectionality. Similar to DAF, the proposed notion for intersectionality, which we term “interactive DAF,” leverages ideas from test fairness and algorithmic fairness. We also provide methods based on the generalized Mantel–Haenszel test, generalized logistic regression, and regularized group regression to detect DAF, interactive DAF, or other subtypes of DAF. Specifically, we employ regularized group regression with three different penalties and examine their performance via a simulation study. Finally, we demonstrate our intersectional DAF framework in real-world applications on grade retention and conditional cash transfer programs in education. 
    more » « less
  2. Abstract Differential item functioning (DIF) screening has long been suggested to ensure assessment fairness. Traditional DIF methods typically focus on the main effects of demographic variables on item parameters, overlooking the interactions among multiple identities. Drawing on the intersectionality framework, we define intersectional DIF as deviations in item parameters that arise from the interactions among demographic variables beyond their main effects and propose a novel item response theory (IRT) approach for detecting intersectional DIF. Under our framework, fixed effects are used to account for traditional DIF, while random item effects are introduced to capture intersectional DIF. We further introduce the concept of intersectional impact, which refers to interaction effects on group-level mean ability. Depending on which item parameters are affected and whether intersectional impact is considered, we propose four models, which aim to detect intersectional uniform DIF (UDIF), intersectional UDIF with intersectional impact, intersectional non-uniform DIF (NUDIF), and intersectional NUDIF with intersectional impact, respectively. For efficient model estimation, a regularized Gaussian variational expectation-maximization algorithm is developed. Simulation studies demonstrate that our methods can effectively detect intersectional UDIF, although their detection of intersectional NUDIF is more limited. 
    more » « less
  3. null (Ed.)
    Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models typically provide a ranked list sorted by each item's relevance or utility. However, recent research has identified issues of algorithmic bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness. 
    more » « less
  4. Algorithmic decision-making systems are increasingly used throughout the public and private sectors to make important decisions or assist humans in making these decisions with real social consequences. While there has been substantial research in recent years to build fair decision-making algorithms, there has been less research seeking to understand the factors that affect people's perceptions of fairness in these systems, which we argue is also important for their broader acceptance. In this research, we conduct an online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm outcomes, algorithm development and deployment procedures, and individual differences. We find that people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the negative effects of describing algorithms that are very biased against particular demographic groups. We find that this effect is moderated by several variables, including participants' education level, gender, and several aspects of the development procedure. Our findings suggest that systems that evaluate algorithmic fairness through users' feedback must consider the possibility of "outcome favorability" bias. 
    more » « less
  5. Abstract Automated, data‐driven decision making is increasingly common in a variety of application domains. In educational software, for example, machine learning has been applied to tasks like selecting the next exercise for students to complete. Machine learning methods, however, are not always equally effective for all groups of students. Current approaches to designing fair algorithms tend to focus on statistical measures concerning a small subset of legally protected categories like race or gender. Focusing solely on legally protected categories, however, can limit our understanding of bias and unfairness by ignoring the complexities of identity. We propose an alternative approach to categorization, grounded in sociological techniques of measuring identity. By soliciting survey data and interviews from the population being studied, we can build context‐specific categories from the bottom up. The emergent categories can then be combined with extant algorithmic fairness strategies to discover which identity groups are not well‐served, and thus where algorithms should be improved or avoided altogether. We focus on educational applications but present arguments that this approach should be adopted more broadly for issues of algorithmic fairness across a variety of applications. 
    more » « less