skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Factors Influencing Perceived Fairness in Algorithmic Decision-Making: Algorithm Outcomes, Development Procedures, and Individual Differences
Algorithmic decision-making systems are increasingly used throughout the public and private sectors to make important decisions or assist humans in making these decisions with real social consequences. While there has been substantial research in recent years to build fair decision-making algorithms, there has been less research seeking to understand the factors that affect people's perceptions of fairness in these systems, which we argue is also important for their broader acceptance. In this research, we conduct an online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm outcomes, algorithm development and deployment procedures, and individual differences. We find that people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the negative effects of describing algorithms that are very biased against particular demographic groups. We find that this effect is moderated by several variables, including participants' education level, gender, and several aspects of the development procedure. Our findings suggest that systems that evaluate algorithmic fairness through users' feedback must consider the possibility of "outcome favorability" bias.  more » « less
Award ID(s):
2001851 2000782
PAR ID:
10178846
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to propose a new framework for algorithmic fairness based on differential item functioning (DIF), which has been commonly used to measure item fairness in psychometrics. Our fairness notion, which we call differential algorithmic functioning (DAF), is defined based on three pieces of information: a decision variable, a “fair” variable, and a protected variable such as race or gender. Under the DAF framework, an algorithm can exhibit uniform DAF, nonuniform DAF, or neither (i.e., non-DAF). For detecting DAF, we provide modifications of well-established DIF methods: Mantel–Haenszel test, logistic regression, and residual-based DIF. We demonstrate our framework through a real dataset concerning decision-making algorithms for grade retention in K–12 education in the United States. 
    more » « less
  2. How social media platforms could fairly conduct content moderation is gaining attention from society at large. Researchers from HCI and CSCW have investigated whether certain factors could affect how users perceive moderation decisions as fair or unfair. However, little attention has been paid to unpacking or elaborating on the formation processes of users' perceived (un)fairness from their moderation experiences, especially users who monetize their content. By interviewing 21 for-profit YouTubers (i.e., video content creators), we found three primary ways through which participants assess moderation fairness, including equality across their peers, consistency across moderation decisions and policies, and their voice in algorithmic visibility decision-making processes. Building upon the findings, we discuss how our participants' fairness perceptions demonstrate a multi-dimensional notion of moderation fairness and how YouTube implements an algorithmic assemblage to moderate YouTubers. We derive translatable design considerations for a fairer moderation system on platforms affording creator monetization. 
    more » « less
  3. Algorithmic fairness research has traditionally been linked to the disciplines of philosophy, ethics, and economics, where notions of fairness are prescriptive and seek objectivity. Increasingly, however, scholars are turning to the study of what different people perceive to be fair, and how these perceptions can or should help to shape the design of machine learning, particularly in the policy realm. The present work experimentally explores five novel research questions at the intersection of the "Who," "What," and "How" of fairness perceptions. Specifically, we present the results of a multi-factor conjoint analysis study that quantifies the effects of the specific context in which a question is asked, the framing of the given question, and who is answering it. Our results broadly suggest that the "Who" and "What," at least, matter in ways that are 1) not easily explained by any one theoretical perspective, 2) have critical implications for how perceptions of fairness should be measured and/or integrated into algorithmic decision-making systems. 
    more » « less
  4. Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not. 
    more » « less
  5. Fairness in data-driven decision-making studies scenarios where individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In location-based applications, decisions are based on individual whereabouts, which often correlate with sensitive attributes such as race, income, and education. While fairness has received significant attention recently, e.g., in machine learning, there is little focus on achieving fairness when dealing with location data. Due to their characteristics and specific type of processing algorithms, location data pose important fairness challenges. We introduce the concept of spatial data fairness to address the specific challenges of location data and spatial queries. We devise a novel building block to achieve fairness in the form of fair polynomials. Next, we propose two mechanisms based on fair polynomials that achieve individual spatial fairness, corresponding to two common location-based decision-making types: distance-based and zone-based. Extensive experimental results on real data show that the proposed mechanisms achieve spatial fairness without sacrificing utility. 
    more » « less