skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limited evidence for phenological differences between non-native and native species
Although many species shift their phenology with climate change, species vary significantly in the direction and magnitude of these responses (i.e., phenological sensitivity). Studies increasingly detect early phenology or high phenological sensitivity to climate in non-native species, which may favor non-native species over natives in warming climates. Yet relatively few studies explicitly compare phenological responses to climate between native vs. non-native species or between non-native populations in the native vs. introduced range, limiting our ability to quantify the role of phenology in invasion success. Here, we review the empirical evidence for and against differences in phenology and phenological sensitivity to climate in both native vs. non-native species and native and introduced populations of non-native species. Contrary to common assumptions, native and non-native plant species did not consistently differ in mean phenology or phenological sensitivity. However, non-native plant species were often either just as or more sensitive, but rarely less sensitive, to climate as natives. Introduced populations of non-native plant species often show earlier reproduction than native populations of the same species, but there was mixed evidence for differences in phenological sensitivity between introduced and native plant populations. We found very few studies comparing native vs. invasive animal phenology. Future work should characterize phenological sensitivity to climate in native vs. non-native plant and animal species, in native vs. introduced populations of non-native species, and across different stages of invasion, and should carefully consider how differences in phenology might promote invasion success or disadvantage native species under climate change.  more » « less
Award ID(s):
1753980 1753954
PAR ID:
10412938
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
10
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A core hypothesis in invasion and community ecology is that species interaction patterns should differ between native and non‐native species due to non‐native species lacking a long evolutionary history in their resident communities. Numerous studies testing this hypothesis yield conflicting results, often focusing on mean interaction rates and overlooking the substantial within‐population variability in species interactions. We explored plant‐herbivore interactions in populations of native and established non‐native plant species by quantifying differences in mean herbivory and added a novel approach by comparing within‐population variability in herbivory. We include as covariates latitude, plant richness, plant growth form and cover. Using leaf herbivory data from the Herbivory Variability Network for 788 plant populations spanning 504 species globally distributed, we found no overall differences in mean herbivory or variability between native and non‐native plants. These results suggest native and established non‐native plants interact similarly with herbivores, indicating non‐native status is not a strong predictor of ecological roles. 
    more » « less
  2. The Enemy Release Hypothesis (ERH) proposes that non-native plants escape their co-evolved herbivores and benefit from reduced herbivory in their introduced ranges. Numerous studies have tested this hypothesis, with conflicting results, but previous studies focus on average levels of herbivory and overlook the substantial within-population variability in herbivory, which may provide unique insights into the ERH. We tested differences in mean herbivory and added a novel approach to the ERH by comparing within-population variability in herbivory between native and non-native plant populations. We include several covariates that might mask an effect of enemy release, including latitude, regional plant richness, plant growth form and plant cover. We use leaf herbivory data collected by the Herbivory Variability Network for 788 plant populations (616 native range populations and 172 introduced range populations) of 503 different native and non-native species distributed worldwide. We found no overall differences in mean herbivory or herbivory variability between native and non-native plant populations. Taken together, our results indicate no evidence of enemy release for non-native plants, suggesting that enemy release is not a generalized mechanism favoring the success of non-native species. 
    more » « less
  3. Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants. 
    more » « less
  4. Phenology is a key biological trait of an organism’s success and is one of the best indicators of its response to recent climate change. Plants are among the most well-studied organisms in this regard, but observational data bearing on this topic are largely restricted to woody species of the northern hemisphere, mostly from ca. the last three decades. Recent research has demonstrated that mobilized online herbarium specimens provide important, albeit mostly neglected, information on plant phenology. Here, we use the web tool CrowdCurio to crowdsource phenological data from more than 10,000 herbarium specimens representing 30 flowering plant species broadly distributed across the eastern United States. Our results, spanning 120 years and generated from over 2,000 crowdsourcers, clarify numerous aspects of plant phenology. First, they reveal that plant reproductive phenology is significantly advancing in response to warming, which is consistent with previous studies. Second, among those species with broad latitudinal ranges, populations from more southern latitudes are significantly more phenologically sensitive to temperature than those from northern populations. Last, contrary to some recent findings, plants in warmer, less variable climates may be much more dynamic, on average, in their phenological sensitivity. Our results are robust to a variety of confounding factors and span large phylogenetic distances and myriad life histories. These may represent more global trends in the latitudinal gradient of phenological response with myriad potential ecological and evolutionary consequences, and leads us to hypothesize that phenological sensitivity across species' ranges is driven by adaptation to local climates. 
    more » « less
  5. Anthropogenic climate change represents one of the most serious threats to ecosystems in the 21st century. As temperatures increase, and precipitation patterns are altered, species need to respond to living in increasingly arid environments. The most noticeable responses to changing climate is for populations to shift spatially, typically upward in elevation and latitude, and phenologically, typically by becoming phenologically active earlier in the year. Variation in how individual organisms or populations respond to climate change can alter their ecological interactions. The timing of flowering is species specific, and when and with whom a plant flowers adjacent to can impact their reproductive success. Between trophic levels, the synchronous phenology of flowering plants and pollinators is critical for both plant and pollinator reproductive success. Plant-plant and plant-pollinator phenological synchrony is at risk of deterioration due to aridification, potentially decreasing ecosystem functioning across the globe. While the bulk of previous research on this issue has been conducted in humid systems, plant- pollinator phenological synchrony has been in understudied in dryland ecosystems, which encompass over 40% of land globally. In the following chapters, I leverage natural history data along spatial and temporal gradients to determine the impacts of climatic variation on plant-plant and plant-pollinator phenological synchrony. I find evidence that plant-plant phenological synchrony is sensitive to changes in community composition. Plant-pollinator phenological synchrony decreases with increasing aridity at the community level, but some species are better suited to future aridification than others. My dissertation highlights the importance of understanding phenological synchrony in dryland ecosystems using analytical techniques specifically suited to the stochastic nature of climate change in these systems. 
    more » « less