ABSTRACT A core hypothesis in invasion and community ecology is that species interaction patterns should differ between native and non‐native species due to non‐native species lacking a long evolutionary history in their resident communities. Numerous studies testing this hypothesis yield conflicting results, often focusing on mean interaction rates and overlooking the substantial within‐population variability in species interactions. We explored plant‐herbivore interactions in populations of native and established non‐native plant species by quantifying differences in mean herbivory and added a novel approach by comparing within‐population variability in herbivory. We include as covariates latitude, plant richness, plant growth form and cover. Using leaf herbivory data from the Herbivory Variability Network for 788 plant populations spanning 504 species globally distributed, we found no overall differences in mean herbivory or variability between native and non‐native plants. These results suggest native and established non‐native plants interact similarly with herbivores, indicating non‐native status is not a strong predictor of ecological roles.
more »
« less
Global test of the enemy release hypothesis reveals similar patterns of herbivory across native and non-native plants
The Enemy Release Hypothesis (ERH) proposes that non-native plants escape their co-evolved herbivores and benefit from reduced herbivory in their introduced ranges. Numerous studies have tested this hypothesis, with conflicting results, but previous studies focus on average levels of herbivory and overlook the substantial within-population variability in herbivory, which may provide unique insights into the ERH. We tested differences in mean herbivory and added a novel approach to the ERH by comparing within-population variability in herbivory between native and non-native plant populations. We include several covariates that might mask an effect of enemy release, including latitude, regional plant richness, plant growth form and plant cover. We use leaf herbivory data collected by the Herbivory Variability Network for 788 plant populations (616 native range populations and 172 introduced range populations) of 503 different native and non-native species distributed worldwide. We found no overall differences in mean herbivory or herbivory variability between native and non-native plant populations. Taken together, our results indicate no evidence of enemy release for non-native plants, suggesting that enemy release is not a generalized mechanism favoring the success of non-native species.
more »
« less
- Award ID(s):
- 2409605
- PAR ID:
- 10554615
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Although many species shift their phenology with climate change, species vary significantly in the direction and magnitude of these responses (i.e., phenological sensitivity). Studies increasingly detect early phenology or high phenological sensitivity to climate in non-native species, which may favor non-native species over natives in warming climates. Yet relatively few studies explicitly compare phenological responses to climate between native vs. non-native species or between non-native populations in the native vs. introduced range, limiting our ability to quantify the role of phenology in invasion success. Here, we review the empirical evidence for and against differences in phenology and phenological sensitivity to climate in both native vs. non-native species and native and introduced populations of non-native species. Contrary to common assumptions, native and non-native plant species did not consistently differ in mean phenology or phenological sensitivity. However, non-native plant species were often either just as or more sensitive, but rarely less sensitive, to climate as natives. Introduced populations of non-native plant species often show earlier reproduction than native populations of the same species, but there was mixed evidence for differences in phenological sensitivity between introduced and native plant populations. We found very few studies comparing native vs. invasive animal phenology. Future work should characterize phenological sensitivity to climate in native vs. non-native plant and animal species, in native vs. introduced populations of non-native species, and across different stages of invasion, and should carefully consider how differences in phenology might promote invasion success or disadvantage native species under climate change.more » « less
-
Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of below- ground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorpo- rating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phy- logenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in bio- logical invasions, consistent with the predictions of the enemy escape hypothesis.more » « less
-
Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of belowground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorporating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI = 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phylogenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in biological invasions, consistent with the predictions of the enemy escape hypothesis.more » « less
-
Abstract It is commonly expected that exotic plants experience reduced herbivory, but experimental evidence for such enemy release is still controversial. One reason for conflicting results might be that community context has rarely been accounted for, although the surrounding plant diversity may moderate enemy release. Here, we tested the effects of focal tree origin and surrounding tree diversity on herbivore abundance and leaf damage in a cross‐Atlantic tree‐diversity experiment in Canada and Germany. We evaluated six European tree species paired with six North American congeners in both their native and exotic range, expecting lower herbivory for the exotic tree species in each pair at each site. Such reciprocal experiments have long been called for, but have not been realized thus far. In addition to a thorough evaluation of overall enemy release effects, we tested whether enemy release effects changed with the surrounding tree diversity. Herbivore abundance was indeed consistently lower on exotics across all six tree genera (12 comparisons). This effect of exotic status was independent of the continent, phylogenetic relatedness, and surrounding tree diversity. In contrast, leaf damage associated with generalist leaf chewers was consistently higher on North American tree species. Interestingly, several species of European weevils were the most abundant leaf chewers on both continents and the dominant herbivores at the Canadian site. Thus, most observed leaf damage is likely to reflect the effect of generalist herbivores that feed heavily on plant species with which they have not evolved. At the German site, sap suckers were the dominant herbivores and showed a pattern consistent with enemy release. Taken together, the consistently lower herbivory on exotics on both continents is not purely a pattern of enemy release in the strictest sense, but to some degree additionally reflects the susceptibility of native plants to invasive herbivores. In conclusion, our cross‐Atlantic study is consistent with the idea that nonnative trees have generally reduced herbivory, regardless of tree community diversity and species identity, but for different reasons depending on the dominant herbivore guild.more » « less
An official website of the United States government

