skip to main content


Title: Role of the overshoot in the shock self-organization
A collisionless shock is a self-organized structure where fields and particle distributions are mutually adjusted to ensure a stable mass, momentum and energy transfer from the upstream to the downstream region. This adjustment may involve rippling, reformation or whatever else is needed to maintain the shock. The fields inside the shock front are produced due to the motion of charged particles, which is in turn governed by the fields. The overshoot arises due to the deceleration of the ion flow by the increasing magnetic field, so that the drop of the dynamic pressure should be compensated by the increase of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus properly adjusting the downstream ion temperature and kinetic pressure and also speeding up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized distributions.  more » « less
Award ID(s):
2010450 2010144
NSF-PAR ID:
10412941
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
89
Issue:
2
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case. 
    more » « less
  2. Collisionless shocks efficiently convert the energy of the directed ion flow into their thermal energy. Ion distributions change drastically at the magnetized shock crossing. Even in the absence of collisions, ion dynamics within the shock front is non-integrable and gyrophase dependent. The downstream distributions just behind the shock are not gyrotropic but become so quickly due to the kinematic gyrophase mixing even in laminar shocks. During the gyrotropization all information about gyrophases is lost. Here we develop a mapping of upstream and downstream gyrotropic distributions in terms of scattering probabilities at the shock front. An analytical expression for the probability is derived for directly transmitted ions in the narrow shock approximation. The dependence of the probability on the magnetic compression and the cross-shock potential is demonstrated. 
    more » « less
  3. Abstract Collisionless shocks channel the energy of the directed plasma flow into the heating of the plasma species and magnetic field enhancement. The kinetic processes at the shock transition cause the ion distributions just behind the shock to be nongyrotropic. Gyrotropization and subsequent isotropization occur at different spatial scales. Accordingly, for a given upstream plasma and magnetic field state, there would be different downstream states corresponding to the anisotropic and isotropic regions. Thus, at least two sets of Rankine–Hugoniot relations are needed, in general, to describe the connection of the downstream measurable parameters to the upstream ones. We establish the relation between the two sets. 
    more » « less
  4. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less
  5. Abstract

    We study a relativistic collisionless electron–positron shock propagating into an unmagnetized ambient medium using 2D particle-in-cell simulations of unprecedented duration and size. The shock generates intermittent magnetic structures of increasingly larger size as the simulation progresses. Toward the end of our simulation, at around 26,000 plasma times, the magnetic coherence scale approachesλ∼ 100 plasma skin depths, both ahead and behind the shock front. We anticipate a continued growth ofλbeyond the time span of our simulation, as long as the shock accelerates particles to increasingly higher energies. The post-shock field is concentrated in localized patches, which maintain a local magnetic energy fractionεB∼ 0.1. Particles randomly sampling the downstream fields spend most of their time in low field regions (εB≪ 0.1) but emit a large fraction of the synchrotron power in the localized patches with strong fields (εB∼ 0.1). Our results have important implications for models of gamma-ray burst afterglows.

     
    more » « less