This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks. Finally, open issues relating to the physical relevance of so-called “croissant” models of the heliosphere, as well as the general (dis)agreement of model predictions with observations are highlighted and critically discussed.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Drawing connections between heliospheric spacecraft and solar wind sources is a vital step in understanding the evolution of the solar corona into the solar wind and contextualizing in situ timeseries. Furthermore, making advanced predictions of this linkage for ongoing heliospheric missions, such as Parker Solar Probe (Parker), is necessary for achieving useful coordinated remote observations and maximizing scientific return. The general procedure for estimating such connectivity is straightforward (i.e., magnetic field line tracing in a coronal model) but validating the resulting estimates is difficult due to the lack of an independent ground truth and limited model constraints. In its most recent orbits, Parker has reached perihelia of 13.3R⊙and moreover travels extremely fast prograde relative to the solar surface, covering over 120° longitude in 3 days. Here we present footpoint predictions and subsequent validation efforts for Parker Encounter 10, the first of the 13.3R⊙orbits, which occurred in November 2021. We show that the longitudinal dependence of in situ plasma data from these novel orbits provides a powerful method of footpoint validation. With reference to other encounters, we also illustrate that the conditions under which source mapping is most accurate for near‐ecliptic spacecraft (such as Parker) occur when solar activity is low, but also require that the heliospheric current sheet is strongly warped by mid‐latitude or equatorial coronal holes. Lastly, we comment on the large‐scale coronal structure implied by the Encounter 10 mapping, highlighting an empirical equatorial cut of the Alfvèn surface consisting of localized protrusions above unipolar magnetic separatrices.
-
Our three-dimensional, time-dependent, multi-fluid model has been used to investigate the solar wind (SW)–local interstellar medium (LISM) interaction with pickup ions (PUIs) treated as a separate fluid. A non-zero, but fixed, angle between the Sun’s magnetic and rotation axis is adopted. The flow of the plasma mixture (thermal SW protons, PUIs, and electrons), is described by the system of ideal magnetohydrodynamic equations with the source terms responsible for charge exchange between ions and neutral atoms. Different populations of neutral atoms are governed by the individual sets of the Euler equations. As the standard Rankine–Hugoniot relations are not appropriate to describe the anisotropic behavior of PUIs at the termination shock, we use a kinetically-derived set of boundary conditions at it. We extend our previous work [1] and perform these new simulations on a Cartesian grid. This approach allows us to maintain a uniform grid resolution in all directions, without compromising resolution, at large distances from the Sun. The possibility of transition of the SW flow to a stochastic regime in the region between the termination shock and heliopause is further investigated.more » « lessFree, publicly-accessible full text available April 1, 2025
-
Diffusive shock acceleration requires the production of backstreaming superthermal ions (injection) as a first step. Such ions can be generated in the process of scattering of ions in the superthermal tail off the shock front. Knowledge of the scattering of high-energy ions is essential for matching conditions of upstream and downstream distributions at the shock transition. Here we analyze the generation of backstreaming ions as a function of their initial energy in a model stationary shock and in a similar rippled shock. Rippling substantially enhances ion reflection and the generation of backstreaming ions for slightly and moderately superthermal energies, and thus is capable of ensuring ion injection into a further diffusive shock acceleration process. For high-energy ions, there is almost no difference in the fraction of backstreaming ions produced and the ion distributions between the planar stationary shock and the rippled shock.more » « less
-
The role of pickup ions (PUIs) in the solar wind interaction with the local interstellar medium is investigated with 3D, multifluid simulations. The flow of the mixture of all charged particles is described by the ideal MHD equations, with the source terms responsible for charge exchange between ions and neutral atoms. The thermodynamically distinct populations of neutrals are governed by individual sets of gas dynamics Euler equations. PUIs are treated as a separate, comoving fluid. Because the anisotropic behavior of PUIs at the heliospheric termination shocks is not described by the standard conservation laws (a.k.a. the Rankine–Hugoniot relations), we derived boundary conditions for them, which are obtained from the dedicated kinetic simulations of collisionless shocks. It is demonstrated that this approach to treating PUIs makes the computation results more consistent with observational data. In particular, the PUI pressure in the inner heliosheath (IHS) becomes higher by ∼40%–50% in the new model, as compared with the solutions where no special boundary conditions are applied. Hotter PUIs eventually lead to charge-exchange-driven cooling of the IHS plasma, which reduces the IHS width by ∼15% (∼8–10 au) in the upwind direction, and even more in the other directions. The density of secondary neutral atoms born in the IHS decreases by ∼30%, while their temperature increases by ∼60%. Simulation results are validated with New Horizons data at distances between 11 and 47 au.more » « less
-
The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. New Horizons provides us with unique measurements of pickup ions in the SW region where they are thermodynamically dominant. Voyager 1 and 2 spacecraft perform in-situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. The Interstellar Boundary Explorer (IBEX) makes it possible identify the 3-D structure of the heliospheric interface. We outline the main challenges in the physics of the SW–LISM interaction. The physical processes that require a focused attention of the heliospheric community are discussed from the theoretical perspective and space missions necessary for their investigation. We emphasize the importance of data-driven simulations, which are necessary for the interpretation and explanation of spacecraft data.more » « less
-
Abstract In a collisionless shock the energy of the directed flow is converted to heating and acceleration of charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is important. With the increase of the Mach number, rippling develops, which is expected to affect ion dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating along the shock front. It is shown that rippling results in the distributions, which are substantially broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate backstreaming ions, which are absent in the planar stationary case.more » « less
-
A collisionless shock is a self-organized structure where fields and particle distributions are mutually adjusted to ensure a stable mass, momentum and energy transfer from the upstream to the downstream region. This adjustment may involve rippling, reformation or whatever else is needed to maintain the shock. The fields inside the shock front are produced due to the motion of charged particles, which is in turn governed by the fields. The overshoot arises due to the deceleration of the ion flow by the increasing magnetic field, so that the drop of the dynamic pressure should be compensated by the increase of the magnetic pressure. The role of the overshoot is to regulate ion reflection, thus properly adjusting the downstream ion temperature and kinetic pressure and also speeding up the collisionless relaxation and reducing the anisotropy of the eventually gyrotropized distributions.more » « less
-
Abstract Using ion tracing in a model shock front we study heating of thermal (Maxwellian) and superthermal (Vasyliunas–Siscoe) populations of protons, singly charged helium, and alpha particles. It is found that heating of thermal and superthermal populations is different, mainly because of substantially higher ion reflection in the superthermal populations. Accordingly, the temperature increase of initially superthermal populations is substantially higher than that of the thermal ions. Heating per mass decreases with the increase of the mass-to-charge ratio because of the reduced effect of the cross-shock potential and, accordingly, weaker ion reflection. The findings are supported by two-dimensional hybrid simulations.more » « less