skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smoothed analysis for the condition number of structured real polynomial systems
We consider the sensitivity of real zeros of structured polynomial systems to pertubations of their coefficients. In particular, we provide explicit estimates for condition numbers of structured random real polynomial systems and extend these estimates to the smoothed analysis setting.  more » « less
Award ID(s):
1900881
PAR ID:
10412959
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Computation
Volume:
90
Issue:
331
ISSN:
0025-5718
Page Range / eLocation ID:
2161 to 2184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the sensitivity of real roots of polynomial systems with respect to perturbations of the coefficients. In particular --- for a version of the condition number defined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor --- we establish new probabilistic estimates that allow a much broader family of measures than considered earlier. We also generalize further by allowing over-determined systems. In Part II, we study smoothed complexity and how sparsity (in the sense of restricting which terms can appear) can help further improve earlier condition number estimates. 
    more » « less
  2. This paper proposes fast polynomial evaluation methods for correctly rounded elementary functions generated using our RLibm approach. The resulting functions produce correct results for all inputs with multiple representations and rounding modes. Given an oracle, the RLibm approach approximates the correctly rounded result rather than the real value of an elementary function. A key observation is that there is an interval of real values around the correctly rounded result such that any real value in it rounds to the correct result. This interval is the maximum freedom available to RLibm’s polynomial generation procedure. Subsequently, the problem of generating correctly rounded elementary functions using these intervals can be structured as a linear programming problem. Our prior work on the RLibm approach uses Horner’s method for polynomial evaluation. This paper explores polynomial evaluation techniques such as Knuth’s coefficient adaptation procedure, parallel execution of operations using Estrin’s procedure, and the use of fused multiply-add operations in the context of the RLibm approach. If we take the polynomial generated by the RLibm approach and subsequently perform polynomial evaluation optimizations, it results in incorrect results due to rounding errors during polynomial evaluation. Hence, we propose to integrate the fast polynomial evaluation procedure in the RLibm’s polynomial generation process. Our new polynomial evaluation procedure that combines parallel execution with fused multiply-add operations outperforms the Horner’s method used by RLibm’s correctly rounded functions. We show the resulting polynomials for 32-bit float are not only correct but also faster than prior functions in RLibm by 24% 
    more » « less
  3. Constraints solvers play a significant role in the analysis, synthesis, and formal verification of complex cyber-physical systems. In this article, we study the problem of designing a scalable constraints solver for an important class of constraints named polynomial constraint inequalities (also known as nonlinear real arithmetic theory). In this article, we introduce a solver named PolyARBerNN that uses convex polynomials as abstractions for highly nonlinears polynomials. Such abstractions were previously shown to be powerful to prune the search space and restrict the usage of sound and complete solvers to small search spaces. Compared with the previous efforts on using convex abstractions, PolyARBerNN provides three main contributions namely (i) a neural network guided abstraction refinement procedure that helps selecting the right abstraction out of a set of pre-defined abstractions, (ii) a Bernstein polynomial-based search space pruning mechanism that can be used to compute tight estimates of the polynomial maximum and minimum values which can be used as an additional abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective functions into polynomial constraints (on the gradient of the objective function) whose solutions are guaranteed to be close to the global optima. These enhancements together allowed the PolyARBerNN solver to solve complex instances and scales more favorably compared to the state-of-the-art nonlinear real arithmetic solvers while maintaining the soundness and completeness of the resulting solver. In particular, our test benches show that PolyARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and PVS (a solver that uses Bernstein expansion to solve multivariate polynomial constraints) on a variety of standard test benches. Finally, we implemented an optimizer called PolyAROpt that uses PolyARBerNN to solve constrained polynomial optimization problems. Numerical results show that PolyAROpt is able to solve high-dimensional and high order polynomial optimization problems with higher speed compared to the built-in optimizer in the Z3 8.9 solver. 
    more » « less
  4. This review discusses Operator Inference, a nonintrusive reduced modeling approach that incorporates physical governing equations by defining a structured polynomial form for the reduced model, and then learns the corresponding reduced operators from simulated training data. The polynomial model form of Operator Inference is sufficiently expressive to cover a wide range of nonlinear dynamics found in fluid mechanics and other fields of science and engineering, while still providing efficient reduced model computations. The learning steps of Operator Inference are rooted in classical projection-based model reduction; thus, some of the rich theory of model reduction can be applied to models learned with Operator Inference. This connection to projection-based model reduction theory offers a pathway toward deriving error estimates and gaining insights to improve predictions. Furthermore, through formulations of Operator Inference that preserve Hamiltonian and other structures, important physical properties such as energy conservation can be guaranteed in the predictions of the reduced model beyond the training horizon. This review illustrates key computational steps of Operator Inference through a large-scale combustion example. 
    more » « less
  5. The Homotopy Continuation (HC) method is known as a prevailing and robust approach for solving numerically complicated polyno- mial systems with guarantees of a global solution. In recent years we are witnessing tremendous advances in the theoretical and al- gorithmic foundations of HC. Furthermore, there are very efficient implementations of several variants of HC that solve large polyno- mial systems that we could not even imagine some years ago. The success of HC has motivated approaching even larger problems or gaining real-time performance. We propose to accelerate the HC computation significantly through a parallel implementation of path tracker in both straight line coefficient HC and parameter HC on a Graphical Processing Unit (GPU). The implementation involves computing independent tracks to convergence simulta- neously, as well as a parallel linear system solver and a parallel evaluation of Jacobian matrices and vectors. We evaluate the per- formance of our implementation using both popular benchmarking polynomial systems as well as polynomial systems of computer vi- sion applications. The experiments demonstrate that our GPU-HC provides as high as 28× and 20× faster than the multi-core Julia in polynomial benchmark problems and polynomial systems for computer vision applications, respectively. Code is made publicly available in https://rb.gy/cvcwgq. 
    more » « less