Software vulnerabilities have become a serious problem with the emergence of new applications that contain potentially vulnerable or malicious code that can compromise the system. The growing volume and complexity of software source codes have opened a need for vulnerability detection methods to successfully predict malicious codes before being the prey of cyberattacks. As leveraging humans to check sources codes requires extensive time and resources and preexisting static code analyzers are unable to properly detect vulnerable codes. Thus, artificial intelligence techniques, mainly deep learning models, have gained traction to detect source code vulnerability. A systematic review is carried out to explore and understand the various deep learning methods employed for the task and their efficacy as a prediction model. Additionally, a summary of each process and its characteristics are examined and its implementation on specific data sets and their evaluation will be discussed.
more »
« less
Detecting Malicious Browser Extensions by Combining Machine Learning and Feature Engineering
As the popularity of the internet continues to grow, along with the use of web browsers and browser extensions, the threat of malicious browser extensions has increased and therefore demands an effective way to detect and in turn prevent the installation of these malicious extensions. These extensions compromise private user information (including usernames and passwords) and are also able to compromise the user’s computer in the form of Trojans and other malicious software. This paper presents a method which combines machine learning and feature engineering to detect malicious browser extensions. By analyzing the static code of browser extensions and looking for features in the static code, the method predicts whether a browser extension is malicious or benign with a machine learning algorithm. Four machine learning algorithms (SVM, RF, KNN, and XGBoost) were tested with a dataset collected by ourselves in this study. Their detection performance in terms of different performance metrics are discussed.
more »
« less
- Award ID(s):
- 2150145
- PAR ID:
- 10412991
- Editor(s):
- Latifi, S.
- Date Published:
- Journal Name:
- Advances in intelligent systems and computing
- Volume:
- 1445
- ISSN:
- 2194-5365
- Page Range / eLocation ID:
- 105-113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Software vulnerabilities have become a serious problem with the emergence of new applications that contain potentially vulnerable or malicious code that can compromise the system. The growing volume and complexity of software source codes have opened a need for vulnerability detection methods to successfully predict malicious codes before being the prey of cyberattacks. As leveraging humans to check sources codes requires extensive time and resources and preexisting static code analyzers are unable to properly detect vulnerable codes. Thus, artificial intelligence techniques, mainly deep learning models, have gained traction to detect source code vulnerability. A systematic review is carried out to explore and understand the various deep learning methods employed for the task and their efficacy as a prediction model. Additionally, a summary of each process and its characteristics are examined and its implementation on specific data sets and their evaluation will be discussed.more » « less
-
The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.more » « less
-
Ko, Hanseok (Ed.)Malware represents a significant security concern in today’s digital landscape, as it can destroy or disable operating systems, steal sensitive user information, and occupy valuable disk space. However, current malware detection methods, such as static-based and dynamic-based approaches, struggle to identify newly developed ("zero-day") malware and are limited by customized virtual machine (VM) environments. To overcome these limitations, we propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science. Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network. The generated network topologies are input into the GraphSAGE architecture to efficiently distinguish between benign and malicious software applications, with the operation names denoted as node features. Importantly, the GraphSAGE models analyze the network’s topological geometry to make predictions, enabling them to detect state-of-the-art malware and prevent potential damage during execution in a VM. To evaluate our approach, we conduct a study on a dataset comprising source code from 24,376 applications, specifically written in C/C++, sourced directly from widely-recognized malware and various types of benign software. The results show a high detection performance with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 99.85%. Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution when compared to current state-of-the-art malware detection methods. The code is released at https://github.com/HantangZhang/MGN.more » « less
-
null (Ed.)In recent years, enterprises have been targeted by advanced adversaries who leverage creative ways to infiltrate their systems and move laterally to gain access to critical data. One increasingly common evasive method is to hide the malicious activity behind a benign program by using tools that are already installed on user computers. These programs are usually part of the operating system distribution or another user-installed binary, therefore this type of attack is called “Living-Off-The-Land”. Detecting these attacks is challenging, as adversaries may not create malicious files on the victim computers and anti-virus scans fail to detect them. We propose the design of an Active Learning framework called LOLAL for detecting Living-Off-the-Land attacks that iteratively selects a set of uncertain and anomalous samples for labeling by a human analyst. LOLAL is specifically designed to work well when a limited number of labeled samples are available for training machine learning models to detect attacks. We investigate methods to represent command-line text using word-embedding techniques, and design ensemble boosting classifiers to distinguish malicious and benign samples based on the embedding representation. We leverage a large, anonymized dataset collected by an endpoint security product and demonstrate that our ensemble classifiers achieve an average F1 score of 96% at classifying different attack classes. We show that our active learning method consistently improves the classifier performance, as more training data is labeled, and converges in less than 30 iterations when starting with a small number of labeled instances.more » « less