Abstract N‐Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N‐type polymers with high crystallinity and order are generally used for high‐conductivity () organic conductors. Few n‐type polymers with only short‐range lamellar stacking for high‐conductivity materials have been reported. Here, we describe an n‐type short‐range lamellar‐stacked all‐polymer thermoelectric system with highestof 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to, and atypical decreased thermal conductivity () with increased doping ratio contribute to the promising performance.
more »
« less
Decoupling Redox Hopping and Catalysis in Metal‐Organic Frameworks ‐based Electrocatalytic CO 2 Reduction
Abstract Traditional MOF e‐CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi‐electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e‐CRR systems, CoPc@NU‐1000 and TPP(Co)@NU‐1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU‐1000 MOF. For CoPc@NU‐1000, the e‐CRR responsive CoI/0potential is close to that of NU‐1000 reduction compared to the TPP(Co)@NU‐1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge‐transport resistance (=59.5 Ω) in CoPC@NU‐1000 led FECO=80 %. In contrast, TPP(Co)@NU‐1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1and=91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.
more »
« less
- Award ID(s):
- 1944903
- PAR ID:
- 10413028
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 22
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet‐triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy‐coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin‐orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution‐stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super‐exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC) butform triplets in MOF in contrast to the frameworks that are built from linkers with sizablekISCbut. This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.more » « less
-
Abstract Serendipitous measurements of deep internal wave signatures are evident in oscillatory variations around the background descent rates reported by one model of Deep Argo float. For the 10,045 profiles analyzed here, the average root‐mean‐square of vertical velocity variances,, from 1,000 m to the seafloor, is 0.0045 m s−1, with a 5%–95% range of 0.0028–0.0067 m s−1. Dominant vertical wavelengths,λz, estimated from the integrals of lagged autocorrelation sequences have an average value of 757 m, with a 5%–95% range of 493–1,108 m. Bothandλzexhibit regional variations among and within some deep ocean basins, with generally largerand shorterλzin regions of rougher bathymetry or stronger deep currents. These correlations are both expected, since largerand shorterλzshould be found near internal wave generation regions.more » « less
-
We prove the endpoint case of a conjecture of Khot and Moshkovitz related to the unique games conjecture, less a small error. Letn ≥ 2. Suppose a subset Ω ofn‐dimensional Euclidean spacesatisfies −Ω = Ωcand Ω + v = Ωc(up to measure zero sets) for every standard basis vector. For anyand for anyq ≥ 1, letand let. For anyx ∈ ∂Ω, letN(x) denote the exterior normal vector atxsuch that ‖N(x)‖2 = 1. Let. Our main result shows thatBhas the smallest Gaussian surface area among all such subsets Ω, less a small error:In particular,Standard arguments extend these results to a corresponding weak inequality for noise stability. Removing the factor 6 × 10−9would prove the endpoint case of the Khot‐Moshkovitz conjecture. Lastly, we prove a Euclidean analogue of the Khot and Moshkovitz conjecture. The full conjecture of Khot and Moshkovitz provides strong evidence for the truth of the unique games conjecture, a central conjecture in theoretical computer science that is closely related to the P versus NP problem. So, our results also provide evidence for the truth of the unique games conjecture. Nevertheless, this paper does not prove any case of the unique games conjecture.more » « less
-
Abstract In this study, we report on turbulent mixing observed during the annual stratification cycle in the hypolimnetic waters of Lake Michigan (USA), highlighting stratified, convective, and transitional mixing periods. Measurements were collected using a combination of moored instruments and microstructure profiles. Observations during the stratified summer showed a shallow, wind‐driven surface mixed layer (SML) with locally elevated dissipation rates in the thermocline () potentially associated with internal wave shear. Below the thermocline, turbulence was weak () and buoyancy‐suppressed (< 8.5), with low hypolimnetic mixing rates () limiting benthic particle delivery. During the convective winter period, a diurnal cycle of radiative convection was observed over each day of measurement, where temperature overturns were directly correlated with elevated turbulence levels throughout the water column (;). A transitional mixing period was observed for spring conditions when surface temperatures were near the temperature of maximum density (TMD3.98) and the water column began to stably stratify. While small temperature gradients allowed strong mixing over the transitional period (), hypolimnetic velocity shear was overwhelmed by weakly stable stratification (;), limiting the development of the SML. These results highlight the importance of radiative convection for breaking down weak hypolimnetic stratification and driving energetic, full water column mixing during a substantial portion of the year (>100 days at our sample site). Ongoing surface water warming in the Laurentian Great Lakes is significantly reducing the annual impact of convective mixing, with important consequences for nutrient cycling, primary production, and benthic‐pelagic coupling.more » « less
An official website of the United States government
