skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New quasar proximity zone size measurements at z ∼ 6 using the enlarged XQR-30 sample
ABSTRACT Proximity zones of high-redshift quasars are unique probes of their central supermassive black holes as well as the intergalactic medium (IGM) in the last stages of reionization. We present 22 new measurements of proximity zones of quasars with redshifts between 5.8 and 6.6, using the enlarged XQR-30 sample of high-resolution, high-SNR quasar spectra. The quasars in our sample have ultraviolet magnitudes of M1450 ∼ −27 and black hole masses of 109–1010 M⊙. Our inferred proximity zone sizes are 2–7 physical Mpc, with a typical uncertainty of less than 0.5 physical Mpc, which, for the first time, also includes uncertainty in the quasar continuum. We find that the correlation between proximity zone sizes and the quasar redshift, luminosity, or black hole mass, indicates a large diversity of quasar lifetimes. Two of our proximity zone sizes are exceptionally small. The spectrum of one of these quasars, with z  = 6.02, displays, unusually for this redshift, damping wing absorption without any detectable metal lines, which could potentially originate from the IGM. The other quasar has a high-ionization absorber ∼0.5 pMpc from the edge of the proximity zone. This work increases the number of proximity zone measurements available in the last stages of cosmic reionization to 87. This data will lead to better constraints on quasar lifetimes and obscuration fractions at high redshift, that in turn will help probe the seed mass and formation redshift of supermassive black holes.  more » « less
Award ID(s):
1751404 1908284
PAR ID:
10413046
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
522
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4918-4933
Size(s):
p. 4918-4933
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Since the discovery of z ∼ 6 quasars two decades ago, studies of their Ly α-transparent proximity zones have largely focused on their utility as a probe of cosmic reionization. But even when in a highly ionized intergalactic medium, these zones provide a rich laboratory for determining the time-scales that govern quasar activity and the concomitant growth of their supermassive black holes. In this work, we use a suite of 1D radiative transfer simulations of quasar proximity zones to explore their time-dependent behaviour for activity time-scales from ∼103 to 108 yr. The sizes of the simulated proximity zones, as quantified by the distance at which the smoothed Ly α transmission drops below 10 per cent (denoted Rp), are in excellent agreement with observations, with the exception of a handful of particularly small zones that have been attributed to extremely short ≲104 lifetimes. We develop a physically motivated semi-analytic model of proximity zones which captures the bulk of their equilibrium and non-equilibrium behaviour, and use this model to investigate how quasar variability on ≲105 yr time-scales is imprinted on the distribution of observed proximity zone sizes. We show that large variations in the ionizing luminosity of quasars on time-scales of ≲104 yr are disfavoured based on the good agreement between the observed distribution of Rp and our model prediction based on ‘lightbulb’ (i.e. steady constant emission) light curves. 
    more » « less
  2. ABSTRACT We introduce a new approach for analysing the intergalactic medium (IGM) damping wings imprinted on the proximity zones of quasars in the epoch of reionization (EoR). Whereas past work has typically forgone the additional constraining power afforded by the blue side continuum ($$\lambda \lesssim 1280\,$$ Å) and/or opted not to model the large correlated IGM transmission fluctuations in the proximity zone ($$\lambda \lesssim 1216\,$$ Å), we construct a generative probabilistic model for the entire spectrum accounting for all sources of error – the stochasticity induced by patchy reionization, the impact of the quasar’s ionizing radiation on the IGM, the unknown intrinsic spectrum of the quasar, and spectral noise. This principled Bayesian method allows us to marginalize out nuisance parameters associated with the quasar’s radiation and its unknown intrinsic spectrum to precisely measure the IGM neutral fraction, $$\langle x_{\rm H\,\small{I}}\rangle$$. A key element of our analysis is the use of dimensionality reduction (DR) to describe the intrinsic quasar spectrum via a small number of nuisance parameters. Using a large sample of 15 559 SDSS/BOSS quasars at $$z \gtrsim 2.15$$ we trained and quantified the performance of six distinct DR methods, and find that a six parameter principal component analysis model (five coefficients plus a normalization) performs best, with complex machine-learning approaches providing no advantage. By conducting statistical inference on 100 realistic mock EoR quasar spectra, we demonstrate the reliability of the credibility contours that we obtain on $$\langle x_{\rm H\,{\small{I}}}\rangle$$ and the quasar lifetime, $$t_{\rm Q}$$. The new method introduced here will transform IGM damping wings into a precision probe of reionization, on the same solid methodological and statistical footing as other precision cosmological measurements. 
    more » « less
  3. Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects. 
    more » « less
  4. Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70Myr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities. 
    more » « less
  5. ABSTRACT High-redshift quasars ionize He ii into He iii around them, heating the intergalactic medium in the process and creating large regions with elevated temperature. In this work, we demonstrate a method based on a convolutional neural network (CNN) to recover the spatial profile for T0, the temperature at the mean cosmic density, in quasar proximity zones. We train the neural network with synthetic spectra drawn from a Cosmic Reionization on Computers simulation. We discover that the simple CNN is able to recover the temperature profile with an accuracy of ≈1400 K in an idealized case of negligible observational uncertainties. We test the robustness of the CNN and discover that it is robust against the uncertainties in quasar host halo mass, quasar continuum, and ionizing flux. We also find that the CNN has good generality with regard to the hardness of quasar spectra. This shows that with noiseless spectra, one could use a simple CNN to distinguish gas inside or outside the He iii region created by the quasar. Because the size of the He iii region is closely related to the total quasar lifetime, this method has great potential in constraining the quasar lifetime on ∼Myr time-scales. However, noise poses a big problem for accuracy and could downgrade the accuracy to ≈2340 K even for very high signal-to-noise (≳50) spectra. Future studies are needed to reduce the error associated with noise to constrain the lifetimes of reionization epoch quasars with currently available data. 
    more » « less