skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rate and Detection Error-Exponent Tradeoffs of Joint Communication and Sensing
We consider a communication model in which a transmitter attempts to communicate with a receiver over a state-dependent channel and simultaneously estimate the state using strictly causal noisy state observations. Motivated by joint communication and sensing scenarios in which the physical phenomenon of interest for sensing evolves at a much slower rate than the rate of communication, the state is assumed to remain constant over the duration of the transmission. We derive a complete characterization of the optimal asymptotic trade-off between communication rate and detection-error exponent when coding strategies are open loop. We also show that closed-loop strategies result in strict improvements of the trade-offs.  more » « less
Award ID(s):
1955401 1910859
PAR ID:
10413181
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. of IEEE International Symposium on Joint Communications & Sensing
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Adaptive communication for Internet of Things (IoT) and Wireless Body Area Network (WBAN) technologies is becoming increasingly popular due to the large power-performance trade-offs and highly dynamic channel conditions. Path loss, low signal to noise ratio (SNR) in the channel and network congestion adversely affect the data communication, each of which can be taken care of using different strategies such as reducing the data rate (for reducing congestion), increasing the output power (for increased path loss) and application of error correction coding (ECC, for low SNR). In this paper, we present a digital-friendly Transceiver SoC consisting of an RF-DAC based transmitter with orthogonally tunable output power, data rate and ECC that enables optimum system level bit error rate (BER) and energy for over 3-orders of energy-performance scalability, along with an ultra-low-power OOK receiver that receives the transmitter's control bits from a nearby base station for closed-loop control. The data rate and ECC control is achieved through a digital baseband, while a tapped capacitor matching network controls the output power. The energy efficiency of the transmitter is 27.6pJ/b at 10MSps and at 0.8V supply (~9X improvement over state-of-the-art), while the entire SoC (Transmitter+OOK receiver for controller feedback) consumes only 41.5pJ/b. 
    more » « less
  2. Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper, we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed- averaging-based integral control in theory and simulations. 
    more » « less
  3. In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). To ensure the sensing quality while preventing the eavesdropping, dedicated sensing signals are transmitted by the BS. We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the potential target location of interest at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the potential target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the potential target location is uncertain in a region of interest, a robust algorithm based on the $$\cal S$$ -procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality, and also show the tremendous potential of IRS for use in sensing and improving the security of ISAC systems. 
    more » « less
  4. Benton, J; Lipovetzky, Nir; Onaindia, Eva; Smith, David E; Srivastava, Siddharth (Ed.)
    Generating and executing temporal plans is difficult in uncertain environments. The current state-of-the-art algorithm for probabilistic temporal networks maintains a high success rate by rescheduling frequently as uncertain events are resolved, but this approach involves substantial resource overhead due to computing and communicating new schedules between agents. Aggressive rescheduling could thus reduce overall mission duration or success in situations where agents have limited energy or computing power, and may not be feasible when communication is limited. In this paper, we propose new approaches for heuristically deciding when rescheduling is most efficacious. We propose two compatible approaches, Allowable Risk and Sufficient Change, that can be employed in combination to compromise between the computation rate, the communication rate, and success rate for new schedules. We show empirically that both approaches allow us to gracefully trade success rate for lower computation and/or communication as compared to the state-of-the-art dynamic scheduling algorithm. 
    more » « less
  5. null (Ed.)
    In this paper, we consider federated learning in wireless edge networks. Transmitting stochastic gradients (SG) or deep model's parameters over a limited-bandwidth wireless channel can incur large training latency and excessive power consumption. Hence, data compressing is often used to reduce the communication overhead. However, efficient communication requires the compression algorithm to satisfy the constraints imposed by the communication medium and take advantage of its characteristics, such as over-the-air computations inherent in wireless multiple-access channels (MAC), unreliable transmission and idle nodes in the edge network, limited transmission power, and preserving the privacy of data. To achieve these goals, we propose a novel framework based on Random Linear Coding (RLC) and develop efficient power management and channel usage techniques to manage the trade-offs between power consumption, communication bit-rate and convergence rate of federated learning over wireless MAC. We show that the proposed encoding/decoding results in an unbiased compression of SG, hence guaranteeing the convergence of the training algorithm without requiring error-feedback. Finally, through simulations, we show the superior performance of the proposed method over other existing techniques. 
    more » « less