skip to main content


Title: Influence of chemistry and structure on interfacial segregation in NbMoTaW with high-throughput atomistic simulations
Refractory multi-principal element alloys exhibiting promising mechanical properties such as excellent strength retention at elevated temperatures have been attracting increasing attention. Although their inherent chemical complexity is considered a defining feature, a challenge arises in predicting local chemical ordering, particularly in grain boundary regions with an enhanced structural disorder. In this study, we use atomistic simulations of a large group of bicrystal models to sample a wide variety of interfacial sites (grain boundary) in NbMoTaW and explore emergent trends in interfacial segregation and the underlying structural and chemical driving factors. Sampling hundreds of bicrystals along the [001] symmetric tilt axis and analyzing more than one hundred and thirty thousand grain boundary sites with a variety of local atomic environments, we uncover segregation trends in NbMoTaW. While Nb is the dominant segregant, more notable are the segregation patterns that deviate from expected behavior and mark situations where local structural and chemical driving forces lead to interesting segregation events. For example, incomplete depletion of Ta in low-angle boundaries results from chemical pinning due to favorable local compositional environments associated with chemical short-range ordering. Finally, machine learning models capturing and comparing the structural and chemical features of interfacial sites are developed to weigh their relative importance and contributions to segregation tendency, revealing a significant increase in predictive capability when including local chemical information. Overall, this work, highlighting the complex interplay between the local grain boundary structure and chemical short-range ordering, suggests tunable segregation and chemical ordering by tailoring grain boundary structure in multi-principal element alloys.  more » « less
Award ID(s):
2011967
NSF-PAR ID:
10413210
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
23
ISSN:
0021-8979
Page Range / eLocation ID:
235301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. An analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys. 
    more » « less
  2. INTRODUCTION Transposable elements (TEs), repeat expansions, and repeat-mediated structural rearrangements play key roles in chromosome structure and species evolution, contribute to human genetic variation, and substantially influence human health through copy number variants, structural variants, insertions, deletions, and alterations to gene transcription and splicing. Despite their formative role in genome stability, repetitive regions have been relegated to gaps and collapsed regions in human genome reference GRCh38 owing to the technological limitations during its development. The lack of linear sequence in these regions, particularly in centromeres, resulted in the inability to fully explore the repeat content of the human genome in the context of both local and regional chromosomal environments. RATIONALE Long-read sequencing supported the complete, telomere-to-telomere (T2T) assembly of the pseudo-haploid human cell line CHM13. This resource affords a genome-scale assessment of all human repetitive sequences, including TEs and previously unknown repeats and satellites, both within and outside of gaps and collapsed regions. Additionally, a complete genome enables the opportunity to explore the epigenetic and transcriptional profiles of these elements that are fundamental to our understanding of chromosome structure, function, and evolution. Comparative analyses reveal modes of repeat divergence, evolution, and expansion or contraction with locus-level resolution. RESULTS We implemented a comprehensive repeat annotation workflow using previously known human repeats and de novo repeat modeling followed by manual curation, including assessing overlaps with gene annotations, segmental duplications, tandem repeats, and annotated repeats. Using this method, we developed an updated catalog of human repetitive sequences and refined previous repeat annotations. We discovered 43 previously unknown repeats and repeat variants and characterized 19 complex, composite repetitive structures, which often carry genes, across T2T-CHM13. Using precision nuclear run-on sequencing (PRO-seq) and CpG methylated sites generated from Oxford Nanopore Technologies long-read sequencing data, we assessed RNA polymerase engagement across retroelements genome-wide, revealing correlations between nascent transcription, sequence divergence, CpG density, and methylation. These analyses were extended to evaluate RNA polymerase occupancy for all repeats, including high-density satellite repeats that reside in previously inaccessible centromeric regions of all human chromosomes. Moreover, using both mapping-dependent and mapping-independent approaches across early developmental stages and a complete cell cycle time series, we found that engaged RNA polymerase across satellites is low; in contrast, TE transcription is abundant and serves as a boundary for changes in CpG methylation and centromere substructure. Together, these data reveal the dynamic relationship between transcriptionally active retroelement subclasses and DNA methylation, as well as potential mechanisms for the derivation and evolution of new repeat families and composite elements. Focusing on the emerging T2T-level assembly of the HG002 X chromosome, we reveal that a high level of repeat variation likely exists across the human population, including composite element copy numbers that affect gene copy number. Additionally, we highlight the impact of repeats on the structural diversity of the genome, revealing repeat expansions with extreme copy number differences between humans and primates while also providing high-confidence annotations of retroelement transduction events. CONCLUSION The comprehensive repeat annotations and updated repeat models described herein serve as a resource for expanding the compendium of human genome sequences and reveal the impact of specific repeats on the human genome. In developing this resource, we provide a methodological framework for assessing repeat variation within and between human genomes. The exhaustive assessment of the transcriptional landscape of repeats, at both the genome scale and locally, such as within centromeres, sets the stage for functional studies to disentangle the role transcription plays in the mechanisms essential for genome stability and chromosome segregation. Finally, our work demonstrates the need to increase efforts toward achieving T2T-level assemblies for nonhuman primates and other species to fully understand the complexity and impact of repeat-derived genomic innovations that define primate lineages, including humans. Telomere-to-telomere assembly of CHM13 supports repeat annotations and discoveries. The human reference T2T-CHM13 filled gaps and corrected collapsed regions (triangles) in GRCh38. Combining long read–based methylation calls, PRO-seq, and multilevel computational methods, we provide a compendium of human repeats, define retroelement expression and methylation profiles, and delineate locus-specific sites of nascent transcription genome-wide, including previously inaccessible centromeres. SINE, short interspersed element; SVA, SINE–variable number tandem repeat– Alu ; LINE, long interspersed element; LTR, long terminal repeat; TSS, transcription start site; pA, xxxxxxxxxxxxxxxx. 
    more » « less
  3. Abstract Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of short-range ordering (SRO) on dislocation glide in the MoNbTi and TaNbTi RMPEAs using a multi-scale modeling approach. Monte carlo/molecular dynamics simulations with a moment tensor potential show that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFEs). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs and stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress. 
    more » « less
  4. Abstract

    High-entropy and medium-entropy alloys are presumed to have a configurational entropy as high as that of an ideally mixed solid solution (SS) of multiple elements in near-equal proportions. However, enthalpic interactions inevitably render such chemically disordered SSs rare and metastable, except at very high temperatures. Here we highlight the wide variety of local chemical ordering (LCO) that sets these concentrated SSs apart from traditional solvent-solute ones. Using atomistic simulations, we reveal that the LCO of the multi-principal-element NiCoCr SS changes with alloy processing conditions, producing a wide range of generalized planar fault energies. We show that the LCO heightens the ruggedness of the energy landscape and raises activation barriers governing dislocation activities. This influences the selection of dislocation pathways in slip, faulting, and twinning, and increases the lattice friction to dislocation motion via a nanoscale segment detrapping mechanism. In contrast, severe plastic deformation reduces the LCO towards random SS.

     
    more » « less
  5. Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses. 
    more » « less