- Award ID(s):
- 2011967
- NSF-PAR ID:
- 10413210
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 23
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- 235301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Interfacial segregation and chemical short-range ordering influence the behavior of grain boundaries in complex concentrated alloys. In this study, we use atomistic modeling of a NbMoTaW refractory complex concentrated alloy to provide insight into the interplay between these two phenomena. Hybrid Monte Carlo and molecular dynamics simulations are performed on columnar grain models to identify equilibrium grain boundary structures. Our results reveal extended near-boundary segregation zones that are much larger than traditional segregation regions, which also exhibit chemical patterning that bridges the interfacial and grain interior regions. Furthermore, structural transitions pertaining to an A2-to-B2 transformation are observed within these extended segregation zones. Both grain size and temperature are found to significantly alter the widths of these regions. An analysis of chemical short-range order indicates that not all pairwise elemental interactions are affected by the presence of a grain boundary equally, as only a subset of elemental clustering types are more likely to reside near certain boundaries. The results emphasize the increased chemical complexity that is associated with near-boundary segregation zones and demonstrate the unique nature of interfacial segregation in complex concentrated alloys.more » « less
-
Abstract The discovery of complex concentrated alloys (CCA) has unveiled materials with diverse atomic environments, prompting the exploration of solute segregation beyond dilute alloys. However, the vast number of possible elemental interactions means a computationally prohibitive number of simulations are needed for comprehensive segregation energy spectrum analysis. Data-driven methods offer promising solutions for overcoming such limitations for modeling segregation in such chemically complex environments (CCEs), and are employed in this study to understand segregation behavior of a refractory CCA, NbMoTaW. A flexible methodology is developed that uses composable computational modules, with different arrangements of these modules employed to obtain site availabilities at absolute zero and the corresponding density of states beyond the dilute limit, resulting in an extremely large dataset containing 10 million data points. The artificial neural network developed here can rely solely on descriptions of local atomic environments to predict behavior at the dilute limit with very small errors, while the addition of negative segregation instance classification allows any solute concentration from zero up to the equiatomic concentration for ternary or quaternary alloys to be modeled at room temperature. The machine learning model thus achieves a significant speed advantage over traditional atomistic simulations, being four orders of magnitude faster, while only experiencing a minimal reduction in accuracy. This efficiency presents a powerful tool for rapid microstructural and interfacial design in unseen domains. Scientifically, our approach reveals a transition in the segregation behavior of Mo from unfavorable in simple systems to favorable in complex environments. Additionally, increasing solute concentration was observed to cause anti-segregation sites to begin to fill, challenging conventional understanding and highlighting the complexity of segregation dynamics in CCEs.
-
Abstract Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of short-range ordering (SRO) on dislocation glide in the MoNbTi and TaNbTi RMPEAs using a multi-scale modeling approach. Monte carlo/molecular dynamics simulations with a moment tensor potential show that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFEs). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs and stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress.more » « less
-
Intrinsic size effects in nanoglass plasticity have been connected to the structural length scales imposed by the interfacial network, and control over this behavior is critical to designing amorphous alloys with improved mechanical response. In this paper, atomistic simulations are employed to probe strain delocalization in nanoglasses with explicit correlation to the interfacial characteristics and length scales of the amorphous grain structure. We show that strength is independent of grain size under certain conditions, but scales with the excess free volume and degree of short-range ordering in the interfaces. Structural homogenization upon annealing of the nanoglasses increases their strength toward the value of the bulk metallic glass; however, continued partitioning of strain to the interfacial regions inhibits the formation of a primary shear band. Intrinsic size effects in nanoglass plasticity thus originate from biased plastic strain accumulation within the interfacial regions, which will ultimately govern strain delocalization and homogenous flow in nanoglasses.more » « less
-
Creep is a serious concern reducing the efficiency and service life of components in various structural applications. Multi-principal element alloys are attractive as a new generation of structural materials due to their desirable elevated temperature mechanical properties. Here, time-dependent plastic deformation behavior of two multi-principal element alloys, CoCrNi and CoCrFeMnNi, was investigated using nano-indentation technique over the temperature range of 298 K to 573 K under static and dynamic loads with applied load up to 1000 mN. The stress exponent was determined to be in the range of 15 to 135 indicating dislocation creep as the dominant mechanism. The activation volume was ~25b3 for both CoCrNi and CoCrFeMnNi alloys, which is in the range indicating dislocation glide. The stress exponent increased with increasing indentation depth due to higher density and entanglement of dislocations, and decreased with increasing temperature owing to thermally activated dislocations. The results for the two multi-principal element alloys were compared with pure Ni. CoCrNi showed the smallest creep displacement and the highest activation energy among the three systems studied indicating its superior creep resistance.more » « less