Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly
- Award ID(s):
- 2011967
- PAR ID:
- 10413235
- Date Published:
- Journal Name:
- ACS Polymers Au
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2694-2453
- Page Range / eLocation ID:
- 501 to 509
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)This communication describes our recent efforts to utilize Wittig olefination reactions for the post-polymerization modification of polynorbornene derivatives prepared through ring opening metathesis polymerization (ROMP). Polymerizing α-bromo ester-containing norbornenes provides polymers that can undergo facile substitution with triphenylphosphine. The resulting polymeric phosphonium salt is then deprotonated to form an ylide that undergoes reaction with various aryl aldehydes in a one-pot fashion to yield the respective cinnamates. These materials can undergo further modification through photo-induced [2 + 2] cycloaddition cross-linking reactions.more » « less
-
Molecular strain can be introduced to influence the outcome of chemical reactions. Once a thermodynamic product is formed, however, reversing the course of a strain-promoted reaction is challenging. Here, a reversible, strain-promoted polymerization in cyclic DNA is reported. The use of nonhybridizing, single-stranded spacers as short as a single nucleotide in length can promote DNA cyclization. Molecular strain is generated by duplexing the spacers, leading to ring opening and subsequent polymerization. Then, removal of the strain-generating duplexers triggers depolymerization and cyclic dimer recovery via enthalpy-driven cyclization and entropy-mediated ring contraction. This reversibility is retained even when a protein is conjugated to the DNA strands, and the architecture of the protein assemblies can be modulated between bivalent and polyvalent states. This work underscores the utility of using DNA not only as a programmable ligand for assembly but also as a route to access restorable bonds, thus providing a molecular basis for DNA-based materials with shape-memory, self-healing, and stimuli-responsive properties.more » « less
An official website of the United States government

