skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: JORDAN–KRONECKER INVARIANTS OF LIE ALGEBRA REPRESENTATIONS AND DEGREES OF INVARIANT POLYNOMIALS
Abstract For an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ . Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ . Furthermore, we prove that these lower bounds are exact if and only if the invariants are independent outside of a set of large codimension. Finally, we show that under certain additional assumptions our bounds are exact if and only if the algebra of invariants is freely generated.  more » « less
Award ID(s):
2008021
PAR ID:
10413236
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transformation Groups
Volume:
28
Issue:
2
ISSN:
1083-4362
Page Range / eLocation ID:
541 to 560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we establish a precise connection between higher rho invariants and delocalized eta invariants. Given an element in a discrete group, if its conjugacy class has polynomial growth, then there is a natural trace map on the $$K_0$$-group of its group $$C^\ast$$-algebra. For each such trace map, we construct a determinant map on secondary higher invariants. We show that, under the evaluation of this determinant map, the image of a higher rho invariant is precisely the corresponding delocalized eta invariant of Lott. As a consequence, we show that if the Baum–Connes conjecture holds for a group, then Lott’s delocalized eta invariants take values in algebraic numbers. We also generalize Lott’s delocalized eta invariant to the case where the corresponding conjugacy class does not have polynomial growth, provided that the strong Novikov conjecture holds for the group. 
    more » « less
  2. Abstract Inspired by methods in prime characteristic in commutative algebra, we introduce and study combinatorial invariants of seminormal monoids. We relate such numbers with the singularities and homological invariants of the semigroup ring associated to the monoid. Our results are characteristic independent. 
    more » « less
  3. Verifying real-world programs often requires inferring loop invariants with nonlinear constraints. This is especially true in programs that perform many numerical operations, such as control systems for avionics or industrial plants. Recently, data-driven methods for loop invariant inference have shown promise, especially on linear loop invariants. However, applying data-driven inference to nonlinear loop invariants is challenging due to the large numbers of and large magnitudes of high-order terms, the potential for overfitting on a small number of samples, and the large space of possible nonlinear inequality bounds. In this paper, we introduce a new neural architecture for general SMT learning, the Gated Continuous Logic Network (G-CLN), and apply it to nonlinear loop invariant learning. G-CLNs extend the Continuous Logic Network (CLN) architecture with gating units and dropout, which allow the model to robustly learn general invariants over large numbers of terms. To address overfitting that arises from finite program sampling, we introduce fractional sampling—a sound relaxation of loop semantics to continuous functions that facilitates unbounded sampling on the real domain. We additionally design a new CLN activation function, the Piecewise Biased Quadratic Unit (PBQU), for naturally learning tight inequality bounds. We incorporate these methods into a nonlinear loop invariant inference system that can learn general nonlinear loop invariants. We evaluate our system on a benchmark of nonlinear loop invariants and show it solves 26 out of 27 problems, 3 more than prior work, with an average runtime of 53.3 seconds. We further demonstrate the generic learning ability of G-CLNs by solving all 124 problems in the linear Code2Inv benchmark. We also perform a quantitative stability evaluation and show G-CLNs have a convergence rate of 97.5% on quadratic problems, a 39.2% improvement over CLN models. 
    more » « less
  4. Abstract Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunz multiplicity. 
    more » « less
  5. Abstract The observables associated with a quantum system S form a non-commutative algebra A S . It is assumed that a density matrix ρ can be determined from the expectation values of observables. But A S admits inner automorphisms a ↦ u a u − 1 , a , u ∈ A S , u * u = u u * = 1 , so that its individual elements can be identified only up to unitary transformations. So since Tr  ρ ( uau *) = Tr( u * ρu ) a , only the spectrum of ρ , or its characteristic polynomial, can be determined in quantum mechanics. In local quantum field theory, ρ cannot be determined at all, as we shall explain. However, abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables in abelian algebras A M ⊂ A S ( M for measurement, S for system). We study the uncertainties in extending ρ | A M to ρ | A S (the determination of which means measurement of A S ) and devise a protocol to determine ρ | A S ≡ ρ by determining ρ | A M for different choices of A M . The problem we formulate and study is a generalization of the Kadison–Singer theorem. We give an example where the system S is a particle on a circle and the experiment measures the abelian algebra of a magnetic field B coupled to S . The measurement of B gives information about the state ρ of the system S due to operator mixing. Associated uncertainty principles for von Neumann entropy are discussed in the appendix, adapting the earlier work by Białynicki-Birula and Mycielski (1975 Commun. Math. Phys. 44 129) to the present case. 
    more » « less