skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: miniMDS: 3D structural inference from high-resolution Hi-C data
Abstract MotivationRecent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. ResultsWe have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp). Availability and implementationA Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS. Supplementary informationSupplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1564466
PAR ID:
10413337
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
33
Issue:
14
ISSN:
1367-4803
Page Range / eLocation ID:
p. i261-i266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MotivationMetagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample. ResultsWe develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs. Availability and implementationHiFine is available at https://github.com/dyxstat/HiFine. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract MotivationDouble minute (DM) chromosomes are acentric extrachromosomal DNA artifacts that are frequently observed in the cells of numerous cancers. They are highly amplified and contain oncogenes and drug-resistance genes, making their presence a challenge for effective cancer treatment. Algorithmic discovery of DM can potentially improve bench-derived therapies for cancer treatment. A hindrance to this task is that DMs evolve, yielding circular chromatin that shares segments from progenitor DMs. This creates DMs with overlapping amplicon coordinates. Existing DM discovery algorithms use whole genome shotgun sequencing (WGS) in isolation, which can potentially incorrectly classify DMs that share overlapping coordinates. ResultsIn this study, we describe an algorithm called ‘HolistIC’ that can predict DMs in tumor genomes by integrating WGS and Hi–C sequencing data. The consolidation of these sources of information resolves ambiguity in DM amplicon prediction that exists in DM prediction with WGS data used in isolation. We implemented and tested our algorithm on the tandem Hi–C and WGS datasets of three cancer datasets and a simulated dataset. Results on the cancer datasets demonstrated HolistIC’s ability to predict DMs from Hi–C and WGS data in tandem. The results on the simulated data showed the HolistIC can accurately distinguish DMs that have overlapping amplicon coordinates, an advance over methods that predict extrachromosomal amplification using WGS data in isolation. Availability and implementationOur software, named ‘HolistIC’, is available at http://www.github.com/mhayes20/HolistIC. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract MotivationThe exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing timeseries Hi-C data. ResultIn this work, we designed a novel framework named HiCForecast, adopting a dynamic voxel flow algorithm to forecast future spatiotemporal Hi-C data. We evaluated how well our method generalizes forecasting data across different species and systems, ensuring performance in homogeneous, heterogeneous, and general contexts. Using both computational and biological evaluation metrics, our results show that HiCForecast outperforms the current state-of-the-art algorithm, emerging as an efficient and powerful tool for forecasting future spatiotemporal Hi-C datasets. Availability and implementationHiCForecast is publicly available at https://github.com/OluwadareLab/HiCForecast. 
    more » « less
  4. Abstract MotivationSingle-cell Hi-C (scHi-C) data provide critical insights into chromatin interactions at individual cell levels, uncovering unique genomic 3D structures. However, scHi-C datasets are characterized by sparsity and noise, complicating efforts to accurately reconstruct high-resolution chromosomal structures. In this study, we present ScUnicorn, a novel blind super-resolution framework for scHi-C data enhancement. ScUnicorn uses an iterative degradation kernel optimization process, unlike traditional super-resolution approaches, which rely on downsampling, predefined degradation ratios, or constant assumptions about the input data to reconstruct high-resolution interaction matrices. Hence, our approach more reliably preserves critical biological patterns and minimizes noise. Additionally, we propose 3DUnicorn, a maximum likelihood algorithm that leverages the enhanced scHi-C data to infer precise 3D chromosomal structures. ResultsOur evaluation demonstrates that ScUnicorn achieves superior performance over the state-of-the-art methods in terms of Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and GenomeDisco scores. Moreover, 3DUnicorn’s reconstructed structures align closely with experimental 3D-FISH data, underscoring its biological relevance. Together, ScUnicorn and 3DUnicorn provide a robust framework for advancing genomic research by enhancing scHi-C data fidelity and enabling accurate 3D genome structure reconstruction. Availability and implementationUnicorn implementation is publicly accessible at https://github.com/OluwadareLab/Unicorn. 
    more » « less
  5. Abstract MotivationHigh-throughput conformation capture experiments, such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps are critical in evaluating the reproducibility of replicate experiments and for identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging. ResultsWe present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods. Availability and implementationhttps://github.com/ucrbioinfo/Selfish 
    more » « less