skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HiCForecast: dynamic network optical flow estimation algorithm for spatiotemporal Hi-C data forecasting
Abstract MotivationThe exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing timeseries Hi-C data. ResultIn this work, we designed a novel framework named HiCForecast, adopting a dynamic voxel flow algorithm to forecast future spatiotemporal Hi-C data. We evaluated how well our method generalizes forecasting data across different species and systems, ensuring performance in homogeneous, heterogeneous, and general contexts. Using both computational and biological evaluation metrics, our results show that HiCForecast outperforms the current state-of-the-art algorithm, emerging as an efficient and powerful tool for forecasting future spatiotemporal Hi-C datasets. Availability and implementationHiCForecast is publicly available at https://github.com/OluwadareLab/HiCForecast.  more » « less
Award ID(s):
2153205
PAR ID:
10570096
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
41
Issue:
2
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SummaryHiCube is a lightweight web application for interactive visualization and exploration of diverse types of genomics data at multiscale resolutions. Especially, HiCube displays synchronized views of Hi-C contact maps and 3D genome structures with user-friendly annotation and configuration tools, thereby facilitating the study of 3D genome organization and function. Availability and implementationHiCube is implemented in Javascript and can be installed via NPM. The source code is freely available at GitHub (https://github.com/wmalab/HiCube). 
    more » « less
  2. Abstract MotivationSingle-cell Hi-C (scHi-C) data provide critical insights into chromatin interactions at individual cell levels, uncovering unique genomic 3D structures. However, scHi-C datasets are characterized by sparsity and noise, complicating efforts to accurately reconstruct high-resolution chromosomal structures. In this study, we present ScUnicorn, a novel blind super-resolution framework for scHi-C data enhancement. ScUnicorn uses an iterative degradation kernel optimization process, unlike traditional super-resolution approaches, which rely on downsampling, predefined degradation ratios, or constant assumptions about the input data to reconstruct high-resolution interaction matrices. Hence, our approach more reliably preserves critical biological patterns and minimizes noise. Additionally, we propose 3DUnicorn, a maximum likelihood algorithm that leverages the enhanced scHi-C data to infer precise 3D chromosomal structures. ResultsOur evaluation demonstrates that ScUnicorn achieves superior performance over the state-of-the-art methods in terms of Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and GenomeDisco scores. Moreover, 3DUnicorn’s reconstructed structures align closely with experimental 3D-FISH data, underscoring its biological relevance. Together, ScUnicorn and 3DUnicorn provide a robust framework for advancing genomic research by enhancing scHi-C data fidelity and enabling accurate 3D genome structure reconstruction. Availability and implementationUnicorn implementation is publicly accessible at https://github.com/OluwadareLab/Unicorn. 
    more » « less
  3. Abstract MotivationSingle-cell Hi-C (scHi-C) technologies have significantly advanced our understanding of the 3D genome organization. However, scHi-C data are often sparse and noisy, leading to substantial computational challenges in downstream analyses. ResultsIn this study, we introduce SHICEDO, a novel deep-learning model specifically designed to enhance scHi-C contact matrices by imputing missing or sparsely captured chromatin contacts through a generative adversarial framework. SHICEDO leverages the unique structural characteristics of scHi-C matrices to derive customized features that enable effective data enhancement. Additionally, the model incorporates a channel-wise attention mechanism to mitigate the over-smoothing issue commonly associated with scHi-C enhancement methods. Through simulations and real-data applications, we demonstrate that SHICEDO outperforms the state-of-the-art methods, achieving superior quantitative and qualitative results. Moreover, SHICEDO enhances key structural features in scHi-C data, thus enabling more precise delineation of chromatin structures such as A/B compartments, TAD-like domains, and chromatin loops. Availability and implementationSHICEDO is publicly available at https://github.com/wmalab/SHICEDO. 
    more » « less
  4. Abstract MotivationRecent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. ResultsWe have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp). Availability and implementationA Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract MotivationDouble minute (DM) chromosomes are acentric extrachromosomal DNA artifacts that are frequently observed in the cells of numerous cancers. They are highly amplified and contain oncogenes and drug-resistance genes, making their presence a challenge for effective cancer treatment. Algorithmic discovery of DM can potentially improve bench-derived therapies for cancer treatment. A hindrance to this task is that DMs evolve, yielding circular chromatin that shares segments from progenitor DMs. This creates DMs with overlapping amplicon coordinates. Existing DM discovery algorithms use whole genome shotgun sequencing (WGS) in isolation, which can potentially incorrectly classify DMs that share overlapping coordinates. ResultsIn this study, we describe an algorithm called ‘HolistIC’ that can predict DMs in tumor genomes by integrating WGS and Hi–C sequencing data. The consolidation of these sources of information resolves ambiguity in DM amplicon prediction that exists in DM prediction with WGS data used in isolation. We implemented and tested our algorithm on the tandem Hi–C and WGS datasets of three cancer datasets and a simulated dataset. Results on the cancer datasets demonstrated HolistIC’s ability to predict DMs from Hi–C and WGS data in tandem. The results on the simulated data showed the HolistIC can accurately distinguish DMs that have overlapping amplicon coordinates, an advance over methods that predict extrachromosomal amplification using WGS data in isolation. Availability and implementationOur software, named ‘HolistIC’, is available at http://www.github.com/mhayes20/HolistIC. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less