The layered transition metal chalcogenides MCrX2 (M = Ag, Cu; X = S, Se, Te) are of interest for energy storage because chemically Li-substituted analogs were reported as superionic Li+ conductors. The coexistence of fast ion transport and reducible transition metal and chalcogen elements suggests that this family may offer multifunctional capability for electrochemical storage. Here, we investigate the electrochemical reduction of AgCrSe2 and CuCrSe2 in non-aqueous Li- and Na-ion electrolytes using electrochemical measurements coupled with ex situ characterization (scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy). Both compounds delivered high initial specific capacities (~ 560 mAh/g), corresponding to 6.64 and 5.73 Li+/e- per formula unit for AgCrSe2 and CuCrSe2, respectively. We attribute this difference to distinct reduction pathways: 1) Li+ intercalation to form LiCrSe2 and extruded Ag or Cu, 2) conversion of LiCrSe2 to Li2Se, and 3) formation of an Ag-Li alloy at the lowest potential, operative only in AgCrSe2. Consistent with this proposed mechanism, step 3 was absent during reduction of AgCrSe2 in a Na-ion electrolyte since Ag does not alloy with Na. These results demonstrate the complex reduction chemistry of MCrX2 in the presence of alkali ions, providing insights into the use of MCrX2 materials as alkali ion superionic conductors or high capacity electrodes for lithium or sodium-ion type batteries.
more »
« less
The non-centrosymmetric layered compounds IrTe 2 I and RhTe 2 I
The previously unreported layered compounds IrTe 2 I and RhTe 2 I were prepared by a high-pressure synthesis method. Single crystal X-ray and powder X-ray diffraction studies find that the compounds are isostructural, crystallizing in a layered orthorhombic structure in the non-centrosymmetric, non-symmorphic space group Pca 2 1 (#29). Characterization reveals diamagnetic, high resistivity, semiconducting behavior for both compounds, consistent with the +3 chemical valence and d 6 electronic configurations for both iridium and rhodium and the Te–Te dimers seen in the structural study. Electronic band structures are calculated for both compounds, showing good agreement with the experimental results.
more »
« less
- Award ID(s):
- 2011750
- PAR ID:
- 10413548
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 51
- Issue:
- 22
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 8688 to 8694
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U 5 f electrons in U M 2 S i 2 (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U 5 f 2 configuration with the Γ 1 ( 1 ) and Γ 2 quasi-doublet symmetry. The amount of the U 5 f 3 configuration, however, varies considerably across the U M 2 S i 2 series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in U P d 2 S i 2 and U N i 2 S i 2 , the availability of orbital degrees of freedom needed for the hidden order in U R u 2 S i 2 to occur, as well as the appearance of Pauli paramagnetism in U F e 2 S i 2 . A unified and systematic picture of the U M 2 S i 2 compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered T h C r 2 S i 2 structure.more » « less
-
Abstract Results are reported for Mn intercalated Zr 2 Te 2 P, where x-ray diffraction , energy dispersive spectroscopy, and transmission electron microscopy measurements reveal that the van der Waals bonded Te–Te layers are partially filled by Zr and Mn ions. This leads to the chemical formulas Zr 0.07 Zr 2 Te 2 P and Mn 0.06 Zr 0.03 Zr 2 Te 2 P for the parent and substituted compounds, respectively. The impact of the Mn ions is seen in the anisotropic magnetic susceptibility, where Curie–Weiss fits to the data indicate that the Mn ions are in the divalent state. Heat capacity and electrical transport measurements reveal metallic behavior, but the electronic coefficient of the heat capacity ( γ Mn ≈ 36.6 mJ (mol·K 2 ) −1 ) is enhanced by comparison to that of the parent compound. Magnetic ordering is seen at T M ≈ 4 K, where heat capacity measurements additionally show that the phase transition is broad, likely due to the disordered Mn distribution. This transition also strongly reduces the electronic scattering seen in the normalized electrical resistance. These results show that Mn substitution simultaneously introduces magnetic interactions and tunes the electronic state, which improves prospects for inducing novel behavior in Zr 2 Te 2 P and the broader family of ternary tetradymites.more » « less
-
Abstract Van der Waals (vdW) materials are an indispensable part of functional device technology due to their versatile physical properties and ease of exfoliating to the low‐dimensional limit. Among all the compounds investigated so far, the search for magnetic vdW materials has intensified in recent years, fueled by the realization of magnetism in 2D. However, metallic magnetic vdW systems are still uncommon. In addition, they rarely host high‐mobility charge carriers, which is an essential requirement for high‐speed electronic applications. Another shortcoming of 2D magnets is that they are highly air sensitive. Using chemical reasoning, TaCo2Te2is introduced as an air‐stable, high‐mobility, magnetic vdW material. It has a layered structure, which consists of Peierls distorted Co chains and a large vdW gap between the layers. It is found that the bulk crystals can be easily exfoliated and the obtained thin flakes are robust to ambient conditions after 4 months of monitoring using an optical microscope. Signatures of canted antiferromagntic behavior are also observed at low‐temperature. TaCo2Te2shows a metallic character and a large, nonsaturating, anisotropic magnetoresistance. Furthermore, the Hall data and quantum oscillation measurements reveal the presence of both electron‐ and hole‐type carriers and their high mobility.more » « less
-
Abstract Transition metal dichalcogenides (TMDs) are known for their layered structure and tunable functional properties. However, a unified understanding on other transition metal chalcogenides (i.e. M 2 X) is still lacking. Here, the relatively new class of copper-based chalcogenides Cu 2 X (X = Te, Se, S) is thoroughly reported. Cu 2 X are synthesized by an unusual vapor–liquid assisted growth on a Al 2 O 3 /Cu/W stack. Liquid copper plays a significant role in synthesizing these layered systems, and sapphire assists with lateral growth and exfoliation. Similar to traditional TMDs, thickness dependent phonon signatures are observed, and high-resolution atomic images reveal the single phase Cu 2 Te that prefers to grow in lattice-matched layers. Charge transport measurements indicate a metallic nature at room temperature with a transition to a semiconducting nature at low temperatures accompanied by a phase transition, in agreement with band structure calculations. These findings establish a fundamental understanding and thrust Cu 2 Te as a flexible candidate for wide applications from photovoltaics and sensors to nanoelectronics.more » « less
An official website of the United States government

