skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced production of acetyl-CoA-based products via peroxisomal surface display in Saccharomyces cerevisiae
Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of β-oxidation in Saccharomyces cerevisiae, and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes – Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase – demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products.  more » « less
Award ID(s):
2013957 1803677
PAR ID:
10413584
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
48
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kamerlin, Lynn (Ed.)
    Abstract Millions of years of evolution have optimized many biosynthetic pathways by use of multi‐step catalysis. In addition, multi‐step metabolic pathways are commonly found in and on membrane‐bound organelles in eukaryotic biochemistry. The fundamental mechanisms that facilitate these reaction processes provide strategies to bioengineer metabolic pathways in synthetic chemistry. Using Brownian dynamics simulations, here we modeled intermediate substrate transportation of colocalized yeast–ester biosynthesis enzymes on the membrane. The substrate acetate ion traveled from the pocket of aldehyde dehydrogenase to its target enzyme acetyl‐CoA synthetase, then the substrate acetyl CoA diffused from Acs1 to the active site of the next enzyme, alcohol‐O‐acetyltransferase. Arranging two enzymes with the smallest inter‐enzyme distance of 60 Å had the fastest average substrate association time as compared with anchoring enzymes with larger inter‐enzyme distances. When the off‐target side reactions were turned on, most substrates were lost, which suggests that native localization is necessary for efficient final product synthesis. We also evaluated the effects of intermolecular interactions, local substrate concentrations, and membrane environment to bring mechanistic insights into the colocalization pathways. The computation work demonstrates that creating spatially organized multi‐enzymes on membranes can be an effective strategy to increase final product synthesis in bioengineering systems. 
    more » « less
  2. Abstract Mevalonate is a key precursor in isoprenoid biosynthesis and a promising commodity chemical. Although mevalonate is a native metabolite in Saccharomyces cerevisiae, its production is challenged by the relatively low flux toward acetyl-CoA in this yeast. In this study we explore different approaches to increase acetyl-CoA supply in S. cerevisiae to boost mevalonate production. Stable integration of a feedback-insensitive acetyl-CoA synthetase (Se-acsL641P) from Salmonella enterica and the mevalonate pathway from Enterococcus faecalis results in the production of 1,390 ± 10 mg/l of mevalonate from glucose. While bifid shunt enzymes failed to improve titers in high-producing strains, inhibition of squalene synthase (ERG9) results in a significant enhancement. Finally, increasing coenzyme A (CoA) biosynthesis by overexpression of pantothenate kinase (CAB1) and pantothenate supplementation further increased production to 3,830 ± 120 mg/l. Using strains that combine these strategies in lab-scale bioreactors results in the production of 13.3 ± 0.5 g/l, which is ∼360-fold higher than previously reported mevalonate titers in yeast. This study demonstrates the feasibility of engineering S. cerevisiae for high-level mevalonate production. 
    more » « less
  3. The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways. 
    more » « less
  4. Abstract The microbial product citramalic acid (citramalate) serves as a five‐carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized inEscherichia colidirectly by the condensation of pyruvate and acetyl‐CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl‐CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in thegltAgene coding citrate synthase prevents acetyl‐CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study theE. colicitrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl‐CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed‐batch process using MEC626/pZE12‐cimAharboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals. 
    more » « less
  5. Abstract Insulin is a peptide hormone that is secreted in Golgi-derived dense-core vesicles from mammalian pancreatic beta-cells in response to nutrients. InDrosophila melanogaster, three insulin-like peptides are secreted as neuropeptides from the insulin-producing cells in the brain. Peroxisomes are lipid-metabolizing organelles that engage into various membrane contact sites with other organelles. Impaired peroxisomal metabolism has been associated with beta-cell apoptosis and impaired insulin secretion. How peroxisomes contribute to insulin and neuropeptide secretion is unknown. Here we demonstrate that peroxisomes interact with the Golgi apparatus inDrosophilainsulin-producing cells. Secretion of insulin-like peptide 2 is cell-intrinsically impaired in mutants lacking the peroxisome assembly factor Pex19. Loss of peroxisomes shifts the profile of sphingolipids towards longer sphingoid bases and leads to accumulation of sphingolipids in the Golgi. We show that peroxisomes dynamically interact with the Golgi in insulin-producing cells and that Pex19 directly contributes to peroxisome-Golgi interaction via the fatty acyl-CoA reductase FAR2/waterproof in the peroxisomal membrane. We propose that this peroxisome-Pex19-Golgi axis is required to adjust Golgi membranes upon starvation by withdrawing lipids with longer side chains, thereby optimizing Golgi membrane flexibility for dense-core vesicle secretion upon refeeding. 
    more » « less