skip to main content


Title: Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae
Abstract

Mevalonate is a key precursor in isoprenoid biosynthesis and a promising commodity chemical. Although mevalonate is a native metabolite in Saccharomyces cerevisiae, its production is challenged by the relatively low flux toward acetyl-CoA in this yeast. In this study we explore different approaches to increase acetyl-CoA supply in S. cerevisiae to boost mevalonate production. Stable integration of a feedback-insensitive acetyl-CoA synthetase (Se-acsL641P) from Salmonella enterica and the mevalonate pathway from Enterococcus faecalis results in the production of 1,390 ± 10 mg/l of mevalonate from glucose. While bifid shunt enzymes failed to improve titers in high-producing strains, inhibition of squalene synthase (ERG9) results in a significant enhancement. Finally, increasing coenzyme A (CoA) biosynthesis by overexpression of pantothenate kinase (CAB1) and pantothenate supplementation further increased production to 3,830 ± 120 mg/l. Using strains that combine these strategies in lab-scale bioreactors results in the production of 13.3 ± 0.5 g/l, which is ∼360-fold higher than previously reported mevalonate titers in yeast. This study demonstrates the feasibility of engineering S. cerevisiae for high-level mevalonate production.

 
more » « less
Award ID(s):
1751840
NSF-PAR ID:
10360880
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Industrial Microbiology and Biotechnology
Volume:
48
Issue:
9-10
ISSN:
1367-5435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract  

    Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30–40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation.

    One Sentence Summary

    An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.

     
    more » « less
  2. Abstract

    The probiotic yeastSaccharomyces boulardii(Sb) is a promising chassis to deliver therapeutic proteins to the gut due toSb’s innate therapeutic properties, resistance to phage and antibiotics, and high protein secretion capacity. To maintain therapeutic efficacy in the context of challenges such as washout, low rates of diffusion, weak target binding, and/or high rates of proteolysis, it is desirable to engineerSbstrains with enhanced levels of protein secretion. In this work, we explored genetic modifications in bothcis-(i.e. to the expression cassette of the secreted protein) andtrans-(i.e. to theSbgenome) that enhanceSb’s ability to secrete proteins, taking aClostridioides difficileToxin A neutralizing peptide (NPA) as our model therapeutic. First, by modulating the copy number of the NPA expression cassette, we found NPA concentrations in the supernatant could be varied by sixfold (76–458 mg/L) in microbioreactor fermentations. In the context of high NPA copy number, we found a previously-developed collection of native and synthetic secretion signals could further tune NPA secretion between 121 and 463 mg/L. Then, guided by prior knowledge ofS. cerevisiae’s secretion mechanisms, we generated a library of homozygous single gene deletion strains, the most productive of which achieved 2297 mg/L secretory production of NPA. We then expanded on this library by performing combinatorial gene deletions, supplemented by proteomics experiments. We ultimately constructed a quadruple protease-deficientSbstrain that produces 5045 mg/L secretory NPA, an improvement of > tenfold over wild-typeSb. Overall, this work systematically explores a broad collection of engineering strategies to improve protein secretion inSband highlights the ability of proteomics to highlight under-explored mediators of this process. In doing so, we created a set of probiotic strains that are capable of delivering a wide range of protein titers and therefore furthers the ability ofSbto deliver therapeutics to the gut and other settings to which it is adapted.

     
    more » « less
  3. Abstract

    D‐Glucaric acid can be produced as a value‐added chemical from biomass through a de novo pathway inEscherichia coli. However, previous studies have identified pH‐mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo‐inositol oxygenase (MIOX) enzyme to be rate‐limiting. We ported this pathway toSaccaromyces cerevisiae, which is naturally acid‐tolerant and evaluate a codon‐optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by theirMIOXgene – either the previous version fromMus musculusor a homologue fromArabidopsis thalianacodon‐optimized for expression inS. cerevisiae– in order to identify the rate‐limiting steps for D‐glucaric acid production both from a fermentative and non‐fermentative carbon source. myo‐Inositol availability was found to be rate‐limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously usedM. musculusMIOX activity was found to be rate‐limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed‐batch mode, and 1.6 g/L from glucose supplemented with myo‐inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.

     
    more » « less
  4. Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of β-oxidation in Saccharomyces cerevisiae, and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes – Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase – demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products. 
    more » « less
  5. ABSTRACT  
    more » « less