skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Privacy-Aware Rejection Sampling
Differential privacy (DP) offers strong theoretical privacy guarantees, though implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (epsilon,delta)-DP as well as f-DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy epsilon-DP for any epsilon. We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-Holder densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers.  more » « less
Award ID(s):
2150615
PAR ID:
10413698
Author(s) / Creator(s):
;
Editor(s):
Weller, Adrian
Date Published:
Journal Name:
Journal of machine learning research
Volume:
24
ISSN:
1533-7928
Page Range / eLocation ID:
1-32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Weller, Adrian (Ed.)
    While differential privacy (DP) offers strong theoretical privacy guarantees, implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a privacy mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (, δ)-DP as well as f -DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy -DP for any . We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-H ̈older densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers. 
    more » « less
  2. Marc'Aurelio Ranzato, Alina Beygelzimer (Ed.)
    Implementations of the exponential mechanism in differential privacy often require sampling from intractable distributions. When approximate procedures like Markov chain Monte Carlo (MCMC) are used, the end result incurs costs to both privacy and accuracy. Existing work has examined these effects asymptotically, but implementable finite sample results are needed in practice so that users can specify privacy budgets in advance and implement samplers with exact privacy guarantees. In this paper, we use tools from ergodic theory and perfect simulation to design exact finite runtime sampling algorithms for the exponential mechanism by introducing an intermediate modified target distribution using artificial atoms. We propose an additional modification of this sampling algorithm that maintains its ǫ-DP guarantee and has improved runtime at the cost of some utility. We then compare these methods in scenarios where we can explicitly calculate a δ cost (as in (ǫ, δ)-DP) incurred when using standard MCMC techniques. Much as there is a well known trade-off between privacy and utility, we demonstrate that there is also a trade-off between privacy guarantees and runtime. 
    more » « less
  3. null (Ed.)
    Composition is one of the most important properties of differential privacy (DP), as it allows algorithm designers to build complex private algorithms from DP primitives. We consider precise composition bounds of the overall privacy loss for exponential mechanisms, one of the fundamental classes of mechanisms in DP. We give explicit formulations of the optimal privacy loss for both the adaptive and non-adaptive settings. For the non-adaptive setting in which each mechanism has the same privacy parameter, we give an efficiently computable formulation of the optimal privacy loss. Furthermore, we show that there is a difference in the privacy loss when the exponential mechanism is chosen adaptively versus non-adaptively. To our knowledge, it was previously unknown whether such a gap existed for any DP mechanisms with fixed privacy parameters, and we demonstrate the gap for a widely used class of mechanism in a natural setting. We then improve upon the best previously known upper bounds for adaptive composition of exponential mechanisms with efficiently computable formulations and show the improvement. 
    more » « less
  4. null (Ed.)
    Markov Chain Monte Carlo (MCMC) methods sample from unnormalized probability distributions and offer guarantees of exact sampling. However, in the continuous case, unfavorable geometry of the target distribution can greatly limit the efficiency of MCMC methods. Augmenting samplers with neural networks can potentially improve their efficiency. Previous neural network-based samplers were trained with objectives that either did not explicitly encourage exploration, or contained a term that encouraged exploration but only for well structured distributions. Here we propose to maximize proposal entropy for adapting the proposal to distributions of any shape. To optimize proposal entropy directly, we devised a neural network MCMC sampler that has a flexible and tractable proposal distribution. Specifically, our network architecture utilizes the gradient of the target distribution for generating proposals. Our model achieved significantly higher efficiency than previous neural network MCMC techniques in a variety of sampling tasks, sometimes by more than an order magnitude. Further, the sampler was demonstrated through the training of a convergent energy-based model of natural images. The adaptive sampler achieved unbiased sampling with significantly higher proposal entropy than a Langevin dynamics sample. The trained sampler also achieved better sample quality. 
    more » « less
  5. Sampling of chordal graphs and various types of acyclic orientations over chordal graphs plays a central role in several AI applications such as causal structure learning. For a given undirected graph, an acyclic orientation is an assignment of directions to all of its edges which makes the resulting directed graph cycle-free. Sampling is often closely related to the corresponding counting problem. Counting of acyclic orientations of a given chordal graph can be done in polynomial time, but the previously known techniques do not seem to lead to a corresponding (efficient) sampler. In this work, we propose a dynamic programming framework which yields a counter and a uniform sampler, both of which run in (essentially) linear time. An interesting feature of our sampler is that it is a stand-alone algorithm that, unlike other DP-based samplers, does not need any preprocessing which determines the corresponding counts. 
    more » « less