Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available January 3, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available November 6, 2025
- 
            f-DP has recently been proposed as a generalization of differential privacy allowing a lossless analysis of composition, post-processing, and privacy amplification via subsampling. In the setting of f-DP, we propose the concept of a canonical noise distribution (CND), the first mechanism designed for an arbitrary f-DP guarantee. The notion of CND captures whether an additive privacy mechanism perfectly matches the privacy guarantee of a given f. We prove that a CND always exists, and give a construction that produces a CND for any f. We show that private hypothesis tests are intimately related to CNDs, allowing for the release of private p-values at no additional privacy cost as well as the construction of uniformly most powerful (UMP) tests for binary data, within the general f-DP framework. We apply our techniques to the problem of difference of proportions testing, and construct a UMP unbiased (UMPU) "semi-private" test which upper bounds the performance of any f-DP test. Using this as a benchmark we propose a private test, based on the inversion of characteristic functions, which allows for optimal inference for the two population parameters and is nearly as powerful as the semi-private UMPU. When specialized to the case of (ϵ,0)-DP, we show empirically that our proposed test is more powerful than any (ϵ/sqrt(2))-DP test and has more accurate type I errors than the classic normal approximation test.more » « less
- 
            Weller, Adrian (Ed.)Differential privacy (DP) offers strong theoretical privacy guarantees, though implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (epsilon,delta)-DP as well as f-DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy epsilon-DP for any epsilon. We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-Holder densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers.more » « less
- 
            Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. We give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a naive-Bayes log-linear model and on a linear regression model.more » « less
- 
            Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)A canonical noise distribution (CND) is an additive mechanism designed to satisfy f-differential privacy (f-DP), without any wasted privacy budget. f-DP is a hypothesis testing-based formulation of privacy phrased in terms of tradeoff functions, which captures the difficulty of a hypothesis test. In this paper, we consider the existence and construction of both log-concave CNDs and multivariate CNDs. Log-concave distributions are important to ensure that higher outputs of the mechanism correspond to higher input values, whereas multivariate noise distributions are important to ensure that a joint release of multiple outputs has a tight privacy characterization. We show that the existence and construction of CNDs for both types of problems is related to whether the tradeoff function can be decomposed by functional composition (related to group privacy) or mechanism composition. In particular, we show that pure epsilon-DP cannot be decomposed in either way and that there is neither a log-concave CND nor any multivariate CND for epsilon-DP. On the other hand, we show that Gaussian-DP, (0,delta)-DP, and Laplace-DP each have both log-concave and multivariate CNDs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available