skip to main content


Title: Comparison of in-person and virtual Grand Canyon undergraduate field trip learning outcomes
Field learning is fundamental in geoscience, but cost, accessibility, and other constraints limit equal access to these experiences. As technological advances afford ever more immersive and student-centered virtual field experiences, they are likely to have a growing role across geoscience education. They also serve as an important tool for providing high-quality online instruction, whether to fully online degree students, students in hybrid in-person/remote programs, or students experiencing disruptions to in-person learning, such as during the COVID-19 pandemic. This mixed-methods study compared learning outcomes of an in-person (ipFT) and a virtual (iVFT) geoscience field trip to Grand Canyon National Park, each of which highlighted the Great Unconformity. Participants included introductory and advanced geology students. In the ipFT, students collectively explored the Canyon through the interpretive Trail of Time along the Canyon rim, guided by the course instructor. In the iVFT, students individually explored the Canyon and studied its geology at river level. 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable active learning and allow for adaptive feedback. We assessed cognitive and affective outcomes in both trips using common measures. Regression analysis showed the iVFT to be associated with significantly greater learning gains. The ipFT students had significantly higher positive affect scores pre-trip, reflecting their excitement for the trip. Overall, our results provide clear evidence that high-quality iVFTs can lead to better learning gains than ipFTs. Although field trips are employed for more than just content learning, this finding may encourage greater use of iVFTs in coursework.  more » « less
Award ID(s):
2110775
NSF-PAR ID:
10413723
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Geoscience Education
ISSN:
1089-9995
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Site visits or field trips are an integral part of construction management education, providing students with experiential learning of jobsite conditions. However, these types of real-world opportunities are difficult to obtain within the current educational framework based on classroom instruction. To expose students to jobsite spatiotemporal contexts (spatial, temporal, or social situations), field trips must be organized at locations that are often inaccessible, dangerous, or expensive to reach. To address field trip barriers, this research proposes the use of iVisit—a proof-of-concept platform for guided interactive site visits that leverages 360-degree panoramas and virtual humans. In this paper, the technical requirements for the creation of digital site visit experiences and resulting educational platform are explained in detail. Additionally, a pilot study was conducted to assess the iVisit platform in terms of usability, presence, and student knowledge gains. A masonry materials’ site visit learning experience was designed and tested with 10 participants at introductory level construction courses. It was found that students perceived the iVisit guided tour as easy to use (SUS Usability Score – Mean = 86%; STD = 8.8%) and highly realistic (SUS Presence Score – Mean = 68.4%; STD = 14.4%). However, students answer approximately one-third of the presented knowledge questions correctly (Student Knowledge Score – Mean = 31.7%; STD = 25%). These outcomes in student knowledge gains were linked to low image quality in the 360-degree captures and augmented pictures within the digital site. Supporting feedback provided by the study participants suggested that future improvements to iVisit require higher image quality and some refinements to its user-interfaces to increase presence and knowledge gains. 
    more » « less
  2. Field trips are widely recognized as an essential educational component to connect classrooms with the real world. When students don’t have access to real field trips, virtual ones have been developed by educators and researchers. Pedagogical agents have been applied to serve as a tour guide and educational tool that facilitate students learning in a virtual learning environment. Such agents are computer software generated and controlled entities that replicate or emulate humans. Previous studies have found that adding anthropomorphic traits to pedagogical agents in learning environments has significantly improved students’ learning experience; however, this area has yet been explored in the context of a virtual construction field trip. In this study, a virtual field trip to a complex mechanical room was developed using 360-degree panoramas and a pedagogical agent was employed to lead the tour. This study focuses on one single anthropomorphic trait - deictic gestures, which are pointing gestures used to refer to specific objects – and explores how such trait affects students’ quantitative learning outcomes and feedbacks on four aspects of the agent, including facilitating learning, credibility, human-like, and engaging. It was found that deictic gestures can improve students’ learning performance and attitudes on multiple aspects of the agent.

     
    more » « less
  3. Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips. We used laboratory grades and a survey to assess differences in student learning and affinity outcomes for in-person and online exercises. Students who completed the in-person exercise earned better scores than their online peers. For example, in Fall 2021, the median lab score for the in-person group was 97.8%, compared to 91.7% for the online group. The in-person group also reported a significant ( p < 0.05) increase in how much they enjoyed learning about water, while online students reported a significant decrease. Online students also reported a significant decrease in how likely they would be to take another class in water or earth sciences. It is unclear whether the in-person exercise had better learning and affinity outcomes because of the hands-on, outdoor qualities of the lab or because the format allowed greater interaction among peers and teaching instructors (TAs). To mitigate disparities in student learning outcomes between the online and in-person course delivery, instructors will implement future changes to the online version of the lab to enhance interactions among students and TAs. 
    more » « less
  4. Surviving Extinction is an interactive, adaptive, digital learning experience through which students learn about the history of vertebrate evolution over the last 350 million years. This experience is self-contained, providing students with immediate feedback. It is designed to be used in a wide range of educational settings from junior high school (∼12 years old) to university level. Surviving Extinction ’s design draws on effective aspects of existing virtual field trip-based learning experiences. Most important among these is the capacity for students to learn through self-directed virtual explorations of simulated historical ecosystems and significant modern-day geologic field sites. Surviving Extinction also makes significant innovations beyond what has previously been done in this area, including extensive use of gamified elements such as collectibles and hidden locations. Additionally, it blends scientifically accurate animations with captured media via a user interface that presents an attractive, engaging, and immersive experience. Surviving Extinction has been field-tested with students at the undergraduate, high school, and pre-high school levels to assess how well it achieves the intended learning outcomes. In all settings we found significant gains pre- to post-activity on a knowledge survey with medium to large effect sizes. This evidence of learning is further supported with data from the gamified elements such as the number of locations discovered and total points earned. Surviving Extinction is freely available for use and detailed resources for educators are provided. It is appropriate for a range of undergraduate courses that cover the history of life on Earth, including ones from a biology, ecology, or geology perspective and courses for either majors or non-majors. Additionally, at the high school level, Surviving Extinction is directly appropriate to teaching adaptation, one of the disciplinary core ideas in the Next Generation Science Standards. Beyond providing this resource to the educational community, we hope that the design ideas demonstrated in Surviving Extinction will influence future development of interactive digital learning experiences. 
    more » « less
  5. Abstract. Here we describe the curriculum and outcomes from a data-intensivegeomorphic analysis course, “Geoscience Field Issues Using High-ResolutionTopography to Understand Earth Surface Processes”, which pivoted to virtualin 2020 due to the COVID-19 pandemic. The curriculum covers technologies formanual and remotely sensed topographic data methods, including (1) GlobalPositioning Systems and Global Navigation Satellite System (GPS/GNSS)surveys, (2) Structure from Motion (SfM) photogrammetry, and (3) ground-based(terrestrial laser scanning, TLS) and airborne lidar. Course content focuseson Earth-surface process applications but could be adapted for othergeoscience disciplines. Many other field courses were canceled in summer2020, so this course served a broad range of undergraduate and graduatestudents in need of a field course as part of degree or researchrequirements. Resulting curricular materials are available freely within theNational Association of Geoscience Teachers' (NAGT's) “Teaching with Online Field Experiences” collection. Theauthors pre-collected GNSS data, uncrewed-aerial-system-derived (UAS-derived) photographs, and ground-based lidar, which students then used in courseassignments. The course was run over a 2-week period and had synchronousand asynchronous components. Students created SfM models that incorporatedpost-processed GNSS ground control points and created derivative SfM and TLSproducts, including classified point clouds and digital elevation models(DEMs). Students were successfully able to (1) evaluate the appropriatenessof a given survey/data approach given site conditions, (2) assess pros andcons of different data collection and post-processing methods in light offield and time constraints and limitations of each, (3) conduct error andgeomorphic change analysis, and (4) propose or implement a protocol to answera geomorphic question. Overall, our analysis indicates the course had asuccessful implementation that met student needs as well as course-specificand NAGT learning outcomes, with 91 % of students receiving an A, B, or Cgrade. Unexpected outcomes of the course included student self-reflectionand redirection and classmate support through a daily reflection anddiscussion post. Challenges included long hours in front of a computer,computing limitations, and burnout because of the condensed nature of thecourse. Recommended implementation improvements include spreading the courseout over a longer period of time or adopting only part of the course andproviding appropriate computers and technical assistance. This paperand published curricular materials should serve as an implementation andassessment guide for the geoscience community to use in virtual or in-personhigh-resolution topographic data courses that can be adapted for individuallabs or for an entire field or data course. 
    more » « less