- Award ID(s):
- 1752995
- PAR ID:
- 10399087
- Date Published:
- Journal Name:
- Frontiers in Environmental Science
- Volume:
- 10
- ISSN:
- 2296-665X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.more » « less
-
Computational methods have gained importance and popularity in both academia and industry for materials research and development in recent years. Since 2014, our team at University of Illinois at Urbana-Champaign has consistently worked on reforming our Materials Science and Engineering curriculum by incorporating computational modules into all mandatory undergraduate courses. The outbreak of the COVID-19 pandemic disrupted education as on-campus resources and activities became highly restricted. Here we seek to investigate the impact of the university moving online in Spring 2020 and resuming in-person instructions in Fall 2021 on the effectiveness of our computational curricular reform from the students' perspective. We track and compare feedback from students in a representative course MSE 182 for their computational learning experience before, during and after the pandemic lockdown from 2019 to 2021. Besides, we survey all undergraduate students, for their online learning experiences during the pandemic. We find that online learning enhances the students' belief in the importance and benefits of computation in materials science and engineering, while making them less comfortable and confident to acquire skills that are relatively difficult. In addition, early computational learners are likely to experience more difficulties with online learning compared to students at late stages of their undergraduate education, regardless of the computational workload. Multiple reasons are found to limit the students' online computational learning, such as insufficient support from instructors and TAs, limited chances of peer communication and harder access to computational resources. Therefore, it is advised to guarantee more resources to students with novice computational skills regarding such limiting reasons in the future when online learning is applied.more » « less
-
Due to the COVID-19 pandemic, many undergraduate students have been given no other option but to take their classes remotely. This has provided many challenges for both students and instructors, especially in the STEM field due to the required laboratory coursework. For this reason, alternative methods of distance learning are needed to optimize student laboratory experiences. The sudden transition to a remote format and adjusting to a new learning environment has proven to be difficult for both students and faculty. It has also been established throughout the pandemic that students perform substantially worse in on-line coursework compared with traditional, in-person classes. Students in a general chemistry course were introduced to innovative asynchronous lab modules that could be performed at home with the additional opportunity of conducting statistical analysis tests. These modules utilize discussion boards, graphing assessments, and labs to teach students how to perform different statistical tests and to familiarize students with the DataClassroom, Google Sheets, and Microsoft Excel platforms. This asynchronous learning format will promote both overall student engagement in STEM courses and student understanding of statistical analysis, thus exhibiting the potential to implement these modules in future undergraduate STEM coursework.more » « less
-
Abstract We examine the impact of the coronavirus pandemic on teaching and learning in an Engineering School of a large US research university. We focus on the adjustment of instructors as they converted their courses to distance teaching and learning formats (e.g., virtual sessions, online forums) and on bachelor student experiences with those changes. While both instructors and students experienced liminality, the pandemic affected these groups differently. Instructors attempted to form
communitas with their students by prioritizing their teaching responsibilities, increasing the accessibility of course materials, and being more available to students compared to pre‐pandemic times. However, students struggled to adapt to online learning contexts which lacked the sense of togetherness previously offered by in‐person classes, study‐groups, tutorial sessions, and communal study spaces. Unable to interact with their peers and createcommunitas , learning online proved to be an ineffective “solution.” Interacting with classmates and working in study groups are among the practices that can help students adjust to course delivery changes, even if it means those cultural practices go virtual. We argue that higher learning institutions, regardless of type (e.g., R1, R2, liberal arts, community colleges), should strengthen their remote teaching approaches. However, those strategies should incorporate: building strong relationships within and across roles, designing inclusive teaching and learning practices that take the contexts in which students learn into account, increasing spaces for peer‐to‐peer learning, and becoming proficient in the technologies needed to teach virtually. -
Most chemical engineering core classes are best taught when students are exposed to a face-to-face learning/teaching environment. With the arrival of coronavirus disease 2019 (COVID-19), the whole education system and the setting were disrupted at Hampton University (HU). Traditional in-person face-to-face classes were forced to move to remote instructions to maintain a healthy and safe campus environment and minimize the spread of COVID-19 on campus and in the community. As an instructor teaching core courses and unit operations laboratory in the Department of Chemical Engineering, it was challenging to move completely virtual and deliver instructions remotely without affecting students' learning outcomes. However, with the appropriate modern technologies and adapting to the students' change and needs, online teaching can be done efficiently and can still have efficient learning outcomes. Various activities were introduced to make the online/virtual class environment engaging in developing technical and professional skills and inducing learning for students. Using the latest educational tools and online resources, formative assessments were conducted throughout the course in an effort to improve student learning and instructor teaching. In addition to that, innovative ways of technology were also used to evaluate student learning and understanding of the material for grading and reporting purposes. Many of the modern educational tools, including Blackboard Collaborate Ultra, Ka-hoot, linoit, surveys, polls, and chemical engineering processes’ simulations and videos were in-troduced to make the synchronous sessions interactive. Likert-like surveys conducted were anal-yses to gauge the effectiveness of incorporation of technology during remote learning. This paper describes the innovative use of technologies to adapt to the COVID-19 pandemic in the Chemical Engineering Classes. It will also explain the strategies to assess the mode of delivery efficacy and how to change the course of teaching to adapt to the students' changing needs.more » « less