Invasive plants often use mutualisms to establish in their new habitats and tend to be visited by resident pollinators similarly or more frequently than native plants. The quality and resulting reproductive success of those visits, however, have rarely been studied in a network context. Here, we use a dynamic model to evaluate the invasion success and impacts on natives of various types of non‐native plant species introduced into thousands of plant–pollinator networks of varying structure. We found that network structure properties did not predict invasion success, but non‐native traits and interactions did. Specifically, non‐native plants producing high amounts of floral rewards but visited by few pollinators at the moment of their introduction were the only plant species able to invade the networks. This result is determined by the transient dynamics occurring right after the plant introduction. Successful invasions increased the abundance of pollinators that visited the invader, but the reallocation of the pollinators' foraging effort from native plants to the invader reduced the quantity and quality of visits received by native plants and made the networks slightly more modular and nested. The positive and negative effects of the invader on pollinator and plant abundance, respectively, were buffered by plant richness. Our results call for evaluating the impact of invasive plants not only on visitation rates and network structure, but also on processes beyond pollination including seed production and recruitment of native plants.
more »
« less
Risk of Facilitated Invasion Depends Upon Invader Identity, Not Environmental Severity, Along an Aridity Gradient
Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens ( B. rubens ), B. tectorum , B. diandrus, Hordeum murinum , and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity.
more »
« less
- Award ID(s):
- 1757351
- PAR ID:
- 10413754
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 10
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Reducing invasive species abundance near the leading edge of invasions is important for maintaining diverse, high-functioning ecosystems, but it can be hard to remove invasives present at low levels within desirable plant communities. Focusing on an invasive annual grass, Bromus tectorum , near the edge of its range in the southern Colorado Plateau, we used an observational study to ask what plant community components were associated with lower levels of B. tectorum , and a manipulative experiment to ask if targeted spring grazing or seeding native competitors were effective for reversing low-level invasion. The observational study found that higher C 3 perennial grass cover and shrub cover were associated with lower B. tectorum abundance, and adult Poa fendleriana and Pascopyrum smithii plants had the fewest B. tectorum individuals within 50 cm. Our manipulative experiment used a randomized, hierarchical design to test the relative effectiveness of seeding native perennial grasses using different spatial planting arrangements, seeding rates, seed enhancements, and targeted spring grazing. Two years after seeding, seeded species establishment was 36% greater in high seed rate than unseeded plots, and high rate plots also had lower B. tectorum cover. One season after targeted spring grazing (a single, 2-week spring-grazing treatment 17 months post-seeding), grazed paddocks displayed trends towards higher seeded species densities and lower B. tectorum biomass in certain seeding treatments, compared to ungrazed paddocks. Results suggest high rate native grass seedings may be effective and short-duration spring grazing should be further evaluated as potential tools for preventing ecosystem conversion along invasion fronts.more » « less
-
Ecological communities often exhibit greater resistance to biological invasions when these communities consist of species that are not closely related. The effective size of this resistance, however, varies geographically. Here we investigate the drivers of this heterogeneity in the context of known contributions of native trees to the resistance of forests in the eastern United States of America to plant invasions. Using 42,626 spatially referenced forest community observations, we quantified spatial heterogeneity in relationships between evolutionary relatedness amongst native trees and both invasive plant species richness and cover. We then modelled the variability amongst the 91 ecological sections of our study area in the slopes of these relationships in response to three factors known to affect invasion and evolutionary relationships –environmental harshness (as estimated via tree height), relative tree density and environmental variability. Invasive species richness and cover declined in plots having less evolutionarily related native trees. The degree to which they did, however, varied considerably amongst ecological sections. This variability was explained by an ecological section’s mean maximum tree height and, to a lesser degree, SD in maximum tree height ( R 2 GLMM = 0.47 to 0.63). In general, less evolutionarily related native tree communities better resisted overall plant invasions in less harsh forests and in forests where the degree of harshness was more homogenous. These findings can guide future investigations aimed at identifying the mechanisms by which evolutionary relatedness of native species affects exotic species invasions and the environmental conditions under which these effects are most pronounced.more » « less
-
Abstract Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale‐dependent impact of biological invasions on native richness from the shape of the native species–area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non‐native plant cover. Decreases in native richness were consistently associated with non‐native species cover, but native richness was compromised only at relatively high levels of non‐native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross‐scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.more » « less
-
The impact of a biological invasion on native communities is expected to be uneven across invaded landscapes due to differences in local abiotic conditions, invader abundance, and traits and composition of the native community. One way to improve predictive ability about the impact of an invasive species given variable conditions is to exploit known mechanisms driving invasive species' success. Invasive plants frequently exhibit allelopathic traits, which can be directly toxic to plants or indirectly impact them via disruption of root symbionts, including mycorrhizal fungi. The indirect mechanism – mutualism disruption – is predicted to impact plants that rely on mycorrhizas but not affect non‐mycorrhizal plant species. To assess whether invader‐driven mutualism disruption explains observed changes in native plant communities, we analyzed long‐term (1998–2018) plant cover data from forest plots across the state of Illinois. We evaluated native plant communities experiencing a range of abundance of invasive allelopathic garlic mustardAlliaria petiolataand varying environmental conditions. Consistent with the mutualism disruption hypothesis, we showed that as garlic mustard abundance increased over time in 0.25 m2sampling quadrats, the abundance of mycorrhizal plant species decreased, but non‐mycorrhizal plant species did not. Over space and time, garlic mustard abundance predicted plant abundances and diversity at the quadrat level, but this relationship was not present at a larger scale when quadrats were aggregated within sites. Garlic mustard's impact on the plant community was highly localized, yet it was as important as abiotic variables for predicting local plant diversity. We showed that garlic mustard abundance was a key predictor of patterns of plant diversity across invasion intensity and environmental heterogeneity in a way that is consistent with mutualism disruption. Our work indicates that the mutualism disruption hypothesis can provide generalizable predictions of the impacts of allelopathic invasive plants that are evident at a broad spatial scale.more » « less
An official website of the United States government

