skip to main content


Title: Temperature dependent perylene fluorescence as a probe of local polymer glass transition dynamics
We demonstrate how the temperature dependence of perylene's fluorescence emission spectrum doped in bulk polymer matrices is sensitive to the local glass transition dynamics of the surrounding polymer segments. Focusing on the first fluorescence peak, we show that the intensity ratio I Ratio ( T ) = I Peak ( T )/ I SRR between the first peak and a self referencing region (SRR) has a temperature dependence resulting from the temperature-dependent nonradiative decay pathway of the excited perylene dye that is influenced by its intermolecular collisions with the surrounding polymers segments. For different polymer matrices, poly(methyl methacrylate) (PMMA), polystyrene (PS), poly(2-vinyl pyridine) (P2VP), and polycarbonate (PC), we demonstrate that I Ratio ( T ) exhibits a transition from a non-Arrhenius behavior above the glass transition temperature T g of the polymer to an Arrhenius temperature dependence with constant activation energy E below the T g of the polymer matrix, indicating perylene's sensitivity to cooperative α-relaxation dynamics of the polymer matrix. This transition in temperature dependence allows us to identify a perylene defined local T peryleneg of the surrounding polymer matrix that agrees well with the known T g values of the polymers. We define a fluorescence intensity shift factor in analogy with the Williams–Landel–Ferry (WLF) equation and use literature WLF parameters for the polymer matrix to quantify the calibration factor c f needed to convert the fluorescence intensity ratio to the effective time scale ratio described by the conventional WLF shift factor. This work opens up a new characterization method that could be used to map the local dynamical response of the glass transition in nanoscale polymer materials using appropriate covalent attachment of perylene to polymer chains.  more » « less
Award ID(s):
1905782
NSF-PAR ID:
10413773
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
32
ISSN:
1744-683X
Page Range / eLocation ID:
6094 to 6104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the region near an interface, the microscopic properties of a glass forming liquid may be perturbed from their equilibrium bulk values. In this work, we probe how the interfacial effects of additive particles dispersed in a matrix can influence the local mobility of the material and its glass transition temperature, T g . Experimental measurements and simulation results indicate that additives, such as nanoparticles, gas molecules, and oligomers, can shift the mobility and T g of a surrounding polymer matrix (even for relatively small concentrations of additive; e.g. , 5–10% by volume) relative to the pure bulk matrix, thus leading to T g enhancement or suppression. Additives thus provide a potential route for modifying the properties of a polymer material without significantly changing its chemical composition. Here we apply the Limited Mobility (LM) model to simulate a matrix containing additive species. We show that both additive concentration, as well as the strength of its very local influence on the surrounding matrix material, will determine whether the T g of the system is raised or lowered, relative to the pure matrix. We demonstrate that incorporation of additives into the simple LM simulation method, which has successfully described the behavior of bulk and thin film glassy solids, leads to direct connections with available experimental and simulation results for a broad range of polymer/additive systems. 
    more » « less
  2. Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. TgT) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2–5 orders of magnitude. Complementary measurements of viscosity and chemical composition are desired to further constrain RH-dependent viscosity in future studies. 
    more » « less
  3. Melt acidolysis polymerization of hydroquinone with a kinked monomer, biphenyl 3,4′-bibenzoate, afforded a novel liquid crystalline polymer (LCP), poly( p -phenylene 3,4′-bibenzoate) (poly(HQ-3,4′BB)). Selection of hydroquinone diacetate (HQ a ) or hydroquinone dipivilate (HQ p ) facilitated either a tan or white final polymer, respectively. 1 H NMR spectroscopy confirmed consistent polymer backbone structure for polymers synthesized with either derivative of hydroquinone. Poly(HQ-3,4′BB) exhibited the onset of weight loss at about 480 °C, similar to commercially available Vectra® LCP. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) revealed a glass transition temperature ( T g ) of 190 °C and an isotropic temperature ( T i ) near 330 °C. The observation of a melting temperature ( T m ) depended upon the thermal history of the polymer. Wide-angle X-ray scattering (WAXS) and polarized optical microscopy (POM) confirmed the formation of a nematic glass morphology after quench-cooling from the isotropic state. Subsequent annealing at 280 °C or mechanical deformation induced crystallization of the polymer. Rheological studies demonstrated similar shear thinning behavior for poly(HQ-3,4′BB) and Vectra® RD501 in the power law region at 340 °C. Zero-shear viscosity measurements indicated that HQ a afforded higher melt viscosities after identical polymerization conditions relative to HQ p , suggesting higher molecular weights. 
    more » « less
  4. Abstract

    A new class of high‐temperature dipolar polymers based on sulfonylated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SO2‐PPO) was synthesized by post‐polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (Tg≈220 °C), the dipolar polarization of these SO2‐PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm−3. Owing to its highTg , the SO2‐PPO25sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m−1was 92 %. Therefore, these dipolar glass polymers are promising for high‐temperature, high‐energy‐density, and low‐loss electrical energy storage applications.

     
    more » « less
  5. Abstract

    A new class of high‐temperature dipolar polymers based on sulfonylated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SO2‐PPO) was synthesized by post‐polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (Tg≈220 °C), the dipolar polarization of these SO2‐PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm−3. Owing to its highTg , the SO2‐PPO25sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m−1was 92 %. Therefore, these dipolar glass polymers are promising for high‐temperature, high‐energy‐density, and low‐loss electrical energy storage applications.

     
    more » « less