skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fundamental limits for rank-one matrix estimation with groupwise heteroskedasticity
Low-rank matrix recovery problems involving high-dimensional and heterogeneous data appear in applications throughout statistics and machine learning. The contribution of this paper is to establish the fundamental limits of recovery for a broad class of these problems. In particular, we study the problem of estimating a rank-one matrix from Gaussian observations where different blocks of the matrix are observed under different noise levels. In the setting where the number of blocks is fixed while the number of variables tends to infinity, we prove asymptotically exact formulas for the minimum mean-squared error in estimating both the matrix and underlying factors. These results are based on a novel reduction from the low-rank matrix tensor product model (with homogeneous noise) to a rank-one model with heteroskedastic noise. As an application of our main result, we show that show recently proposed methods based on applying principal component analysis (PCA) to weighted combinations of the data are optimal in some settings but sub-optimal in others. We also provide numerical results comparing our asymptotic formulas with the performance of methods based weighted PCA, gradient descent, and approximate message passing.  more » « less
Award ID(s):
1750362
PAR ID:
10413790
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction that is useful for various data science problems. However, many applications involve heterogeneous data that varies in quality due to noise characteristics associated with different sources of the data. Methods that deal with this mixed dataset are known as heteroscedastic methods. Current methods like HePPCAT make Gaussian assumptions of the basis coefficients that may not hold in practice. Other methods such as Weighted PCA (WPCA) assume the noise variances are known, which may be difficult to know in practice. This paper develops a PCA method that can estimate the sample-wise noise variances and use this information in the model to improve the estimate of the subspace basis associated with the low-rank structure of the data. This is done without distributional assumptions of the low-rank component and without assuming the noise variances are known. Simulations show the effectiveness of accounting for such heteroscedasticity in the data, the benefits of using such a method with all of the data versus retaining only good data, and comparisons are made against other PCA methods established in the literature like PCA, Robust PCA (RPCA), and HePPCAT. Code available at https://github.com/javiersc1/ALPCAH. 
    more » « less
  2. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $$X^\star$$ from linear measurements $$b_i = \langle A_i, X^\star \rangle$$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $$A_i$$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $$X^\star$$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less
  3. Summary Motivated by the problem of estimating bacterial growth rates for genome assemblies from shotgun metagenomic data, we consider the permuted monotone matrix model $$Y=\Theta\Pi+Z$$ where $$Y\in \mathbb{R}^{n\times p}$$ is observed, $$\Theta\in \mathbb{R}^{n\times p}$$ is an unknown approximately rank-one signal matrix with monotone rows, $$\Pi \in \mathbb{R}^{p\times p}$$ is an unknown permutation matrix, and $$Z\in \mathbb{R}^{n\times p}$$ is the noise matrix. In this article we study estimation of the extreme values associated with the signal matrix $$\Theta$$, including its first and last columns and their difference. Treating these estimation problems as compound decision problems, minimax rate-optimal estimators are constructed using the spectral column-sorting method. Numerical experiments on simulated and synthetic microbiome metagenomic data are conducted, demonstrating the superiority of the proposed methods over existing alternatives. The methods are illustrated by comparing the growth rates of gut bacteria in inflammatory bowel disease patients and control subjects. 
    more » « less
  4. Recently, there has been significant progress in understanding the convergence and generalization properties of gradient-based methods for training overparameterized learning models. However, many aspects including the role of small random initialization and how the various parameters of the model are coupled during gradient-based updates to facilitate good generalization, remain largely mysterious. A series of recent papers have begun to study this role for non-convex formulations of symmetric Positive Semi-Definite (PSD) matrix sensing problems which involve reconstructing a low-rank PSD matrix from a few linear measurements. The underlying symmetry/PSDness is crucial to existing convergence and generalization guarantees for this problem. In this paper, we study a general overparameterized low-rank matrix sensing problem where one wishes to reconstruct an asymmetric rectangular low-rank matrix from a few linear measurements. We prove that an overparameterized model trained via factorized gradient descent converges to the low-rank matrix generating the measurements. We show that in this setting, factorized gradient descent enjoys two implicit properties: (1) coupling of the trajectory of gradient descent where the factors are coupled in various ways throughout the gradient update trajectory and (2) an algorithmic regularization property where the iterates show a propensity towards low-rank models despite the overparameterized nature of the factorized model. These two implicit properties in turn allow us to show that the gradient descent trajectory from small random initialization moves towards solutions that are both globally optimal and generalize well. 
    more » « less
  5. null (Ed.)
    Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials. 
    more » « less