Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 7, 2025
-
Low-rank matrix recovery problems involving high-dimensional and heterogeneous data appear in applications throughout statistics and machine learning. The contribution of this paper is to establish the fundamental limits of recovery for a broad class of these problems. In particular, we study the problem of estimating a rank-one matrix from Gaussian observations where different blocks of the matrix are observed under different noise levels. In the setting where the number of blocks is fixed while the number of variables tends to infinity, we prove asymptotically exact formulas for the minimum mean-squared error in estimating both the matrix and underlying factors. These results are based on a novel reduction from the low-rank matrix tensor product model (with homogeneous noise) to a rank-one model with heteroskedastic noise. As an application of our main result, we show that show recently proposed methods based on applying principal component analysis (PCA) to weighted combinations of the data are optimal in some settings but sub-optimal in others. We also provide numerical results comparing our asymptotic formulas with the performance of methods based weighted PCA, gradient descent, and approximate message passing.more » « less
-
The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments.The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating the GOT distance under more general settings. For the Gaussian-smoothed $$p$$-Wasserstein distance in $$d$$ dimensions, our results require only the existence of a moment greater than $d + 2p$. For the special case of sub-gamma distributions, we quantify the dependence on the dimension $$d$$ and establish a phase transition with respect to the scale parameter. We also prove convergence for dependent samples, only requiring a condition on the pairwise dependence of the samples measured by the covariance of the feature map of a kernel space. A key step in our analysis is to show that the GOT distance is dominated by a family of kernel maximum mean discrepancy (MMD) distances with a kernel that depends on the cost function as well as the amount of Gaussian smoothing. This insight provides further interpretability for the GOT framework and also introduces a class of kernel MMD distances with desirable properties. The theoretical results are supported by numerical experiments.more » « less
-
null (Ed.)This paper explores some applications of a two-moment inequality for the integral of the rth power of a function, where 0<1. The first contribution is an upper bound on the Rényi entropy of a random vector in terms of the two different moments. When one of the moments is the zeroth moment, these bounds recover previous results based on maximum entropy distributions under a single moment constraint. More generally, evaluation of the bound with two carefully chosen nonzero moments can lead to significant improvements with a modest increase in complexity. The second contribution is a method for upper bounding mutual information in terms of certain integrals with respect to the variance of the conditional density. The bounds have a number of useful properties arising from the connection with variance decompositions.more » « less
-
null (Ed.)We consider a generalization of an important class of high-dimensional inference problems, namely spiked symmetric matrix models, often used as probabilistic models for principal component analysis. Such paradigmatic models have recently attracted a lot of attention from a number of communities due to their phenomenological richness with statistical-to-computational gaps, while remaining tractable. We rigorously establish the information-theoretic limits through the proof of single-letter formulas for the mutual information and minimum mean-square error. On a technical side we improve the recently introduced adaptive interpolation method, so that it can be used to study low-rank models (i.e., estimation problems of "tall matrices") in full generality, an important step towards the rigorous analysis of more complicated inference and learning models.more » « less
-
We consider the problem of estimating a $$p$$ -dimensional vector $$\beta$$ from $$n$$ observations $$Y=X\beta+W$$ , where $$\beta_{j}\mathop{\sim}^{\mathrm{i.i.d}.}\pi$$ for a real-valued distribution $$\pi$$ with zero mean and unit variance’ $$X_{ij}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,1)$$ , and $$W_{i}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,\ \sigma^{2})$$ . In the asymptotic regime where $$n/p\rightarrow\delta$$ and $$p/\sigma^{2}\rightarrow$$ snr for two fixed constants $$\delta,\ \mathsf{snr}\in(0,\ \infty)$$ as $$p\rightarrow\infty$$ , the limiting (normalized) minimum mean-squared error (MMSE) has been characterized by a single-letter (additive Gaussian scalar) channel. In this paper, we show that if the MMSE function of the single-letter channel converges to a step function, then the limiting MMSE of estimating $$\beta$$ converges to a step function which jumps from 1 to 0 at a critical threshold. Moreover, we establish that the limiting mean-squared error of the (MSE-optimal) approximate message passing algorithm also converges to a step function with a larger threshold, providing evidence for the presence of a computational-statistical gap between the two thresholds.more » « less