skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Observation of Fermi arcs and Weyl nodes in a noncentrosymmetric magnetic Weyl semimetal
Award ID(s):
1847962
PAR ID:
10413890
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Materials
Volume:
7
Issue:
5
ISSN:
2475-9953; PRMHAR
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Beginning from the conventional square-lattice nearest-neighbor antiferromagnetic Heisenberg model, we allow the 𝐽𝑥 and 𝐽𝑦 couplings to be anisotropic, with their values depending on the bond orientation. The emergence of anisotropic, bond-dependent couplings should be expected to occur naturally in most antiferromagnetic compounds which undergo structural transitions that reduce the point-group symmetry at lower temperature. Using the spin-wave approximation, we study the model in several parameter regimes by diagonalizing the reduced Hamiltonian exactly and computing the edge spectrum and Berry connection vector, which show clear evidence of localized topological charges. We discover phases that exhibit Weyl-type spin-wave dispersion, characterized by pairs of degenerate points and edge states, as well as phases supporting lines of degeneracy. We also identify a parameter regime in which there is an exotic state hosting gapless linear spin-wave dispersions with different longitudinal and transverse spin-wave velocities. 
    more » « less